Форма молекулы рнк. Виды РНК. Строение и функции РНК. Геномные тэги и тРНК

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она необходимый и важнейший элемент жизнедеятельности клетки. Механизмы многих...

От Masterweb

09.04.2018 14:00

Различные виды ДНК и РНК – нуклеиновых кислот – это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

Кратко о строении РНК

Итак, РНК, рибонуклеиновая кислота, – это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу – полинуклеотид. Так образуется первичная структура РНК.

Вторичная структура – образование двойной цепочки – образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

В рабочей форме молекула РНК образует также третичную структуру – особое пространственное строение, конформацию.

Синтез РНК

Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК – промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей – именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.


Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

Основные виды РНК и их функции в клетке

Они следующие:

  • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция – перенос генетической информации с ДНК.
  • Рибосомная (рРНК), обеспечивающая процесс трансляции – синтез белка на матрице мРНК.
  • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
  • Малые РНК – обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
  • РНК-геномы – кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

Остановимся подробнее на различных видах молекул РНК.

Матричная (информационная) РНК

Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций – процессинг.

Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов – кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост – последовательность адениновых нуклеотидов.

После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков – интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.


Рибосомная РНК

Основу рибосомы – комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.


Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной – 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

Транспортная РНК

Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции – синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа – акцепторном участке – расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля – для связывания с большой субчастицей рибосомы.


Малые РНК

Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система – важная часть иммунного антивирусного ответа клетки.

Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

РНК-геном

Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными – одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.


Значение исследования РНК в современной науке

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Существует три типа РНК: рибосомные, транспортные и информационные (матричные) рибонуклеиновые . Все по структуре, размеру молекул, и выполняемым функциям.

Чем характеризуются рибосомные РНК (рРНК)

Рибосомные РНК составляют 85% всех РНК клетки. Они синтезируются в ядрышке. Рибосомные РНК являются структурным компонентом рибосом и принимают непосредственное участие в биосинтезе белка.

Рибосомы – это органоиды клетки, состоящие из четырех рРНК и нескольких десятков белков. Их главная функция – синтез белка.

Зачем нужны транспортные РНК

Транспортные РНК (тРНК) – самые маленькие по размеру рибонуклеиновые кислоты клетки. Они составляют 10% всех клеточных РНК. Транспортные РНК образуются в ядре на ДНК и затем переходят в цитоплазму. Каждая тРНК переносит определенные аминокислоты к рибосомам, где они соединяются пептидными связями в особой последовательности, заданной матричной РНК.

В молекуле транспортной РНК есть два активных участка: триплет-антикодон и акцепторный конец. Акцепторный конец – это «посадочная площадка» для аминокислоты. Антикодон на другом конце молекулы представляет собой триплет нуклеотидов, комплементарный соответствующему кодону информационной РНК.

Каждой аминокислоте соответствует последовательность трех нуклеотидов – триплет. Нуклеотид – это мономер нуклеиновых кислот, состоящий из фосфатной группы, пентозы и азотистого основания.

Антикодон различен для тРНК, транспортирующих разные аминокислоты. В триплете закодирована информация именно о той аминокислоте, которая переносится данной молекулой.

Где синтезируются матричные РНК, и в чем их роль

Информационные, или матричные РНК (иРНК, мРНК) синтезируются на участке одной из двух цепочек ДНК под действием фермента РНК-полимеразы. Они составляют 5% РНК клетки. Последовательность азотистых оснований иРНК строго комплементарна последовательности оснований участка ДНК: аденину ДНК соответствует урацил иРНК, тимину – аденин, гуанину – цитозин и цитозину – гуанин.

Матричная РНК считывает наследственную информацию от хромосомных ДНК и переносит ее к рибосомам, где эта информация реализуется. В последовательности нуклеотидов иРНК зашифрована информация о структуре белка.

Молекулы РНК могут находиться в ядре, цитоплазме, рибосомах, митохондриях и пластидах. Из разных видов РНК складывается единая функциональная система, направленная посредством синтеза белка на реализацию наследственной информации.

И урацил (в отличие от ДНК, содержащий вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусов.


Основные функции РНК в клеточных организмах - это шаблон для трансляции генетической информации в белки и поставка соответствующих аминокислот к рибосомам. В вирусах является носителем генетической информации (кодирует белки оболочки и ферменты вирусов). Вироиды состоят из кольцевой молекулы РНК и не содержат в себе других молекул. Существует гипотеза мира РНК , согласно которой, РНК возникли перед белками и были первыми формами жизни.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразы. Затем матричные РНК (мРНК) участвуют в процессе, называемом трансляцией. Трансляция - это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечной РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а матричные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так мРНК участвуют в эукариотических матричных РНК и других процессах.

Кроме того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы) у отдельных РНК обнаружена собственная энзиматическая активность, способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Ряда вирусов состоят из РНК, то есть у них она играет роль, которую в высших организмах выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК - первая молекула, способная к самовоспроизведению в добиологических системах.

История изучения РНК

Нуклеиновые кислоты были открыты в 1868 году швейцарским ученым Иоганном Фридрихом Мишером, который назвал эти вещества «нуклеин», поскольку они были обнаружены в ядре (лат. nucleus). Позже было обнаружено, что бактериальные клетки, в которых нет ядра, тоже содержат нуклеиновые кислоты.

Значение РНК в синтезе белков было предположено в 1939 году в работе Торберна Оскара Касперссона, Жана Брачета и Джека Шульца. Джерард Маирбакс выделил первую матричную РНК, кодирующую гемоглобин кролика и показал, что при ее введении в ооциты образуется тот же самый белок.

В Советском Союзе в 1956-57 годах проводились работы (А. Белозерский, А. Спирин, Э. Волкин, Ф. Астрахан) по определению состава РНК клеток, которые привели к выводу, что основную массу РНК в клетке составляют рибосомные РНК.

В 1959 году Северо Очоа получил Нобелевскую премию по медицине за открытие механизма синтеза РНК. Последовательность из 77 нуклеотидов одной из тРНК дрожжей S. cerevisiae была определена в 1965 году в лаборатории Роберта Холле, за что в 1968 году он получил Нобелевскую премию по медицине.

В 1967 Карл Везе предположил, что РНК имеют каталитические свойства. Он выдвинул так называемую Гипотезу РНК-мира, в котором РНК прото-организмов служили и как молекулы хранения информации (сейчас эта роль выполняется ДНК) и как молекулы, которые катализировали метаболические реакции (сейчас это делают ферменты).

В 1976 Уолтер Фаерс и его группа из Гентского университета (Голландия) впервые определили последовательность генома РНК - содержащегося в вирусе, бактериофага MS2.

В начале 1990-х было обнаружено, что введение чужеродных генов в геном растений приводит к подавлению выражения аналогичных генов растения. Примерно в это же время было показано, что РНК длиной около 22 оснований, которые сейчас называются микро-РНК, играют регуляторную роль в онтогенезе круглых червей.

Гипотеза о значении РНК в синтезе белков была высказана Торбьерном Касперссоном (Torbjörn Caspersson) на основе исследований 1937-1939 гг ., в результате которых было показано, что клетки, активно синтезирующие белок, содержат большое количество РНК. Подтверждение гипотезы было получено Юбером Шантренном (Hubert Chantrenne).

Особенности строения РНК

Нуклеотиды РНК состоят из сахара - рибозы, к которой в положении 1 "присоединена одна из основ: аденин, гуанин, цитозин или урацил. Фосфатная группа объединяет рибозы в цепочку, образуя связи с 3 "атомом углерода одной рибозы и в 5" положении другого. Фосфатные группы при физиологическом рН отрицательно заряжены, поэтому РНК - можно назвать полианионом .

РНК транскрибируется как полимер четырех оснований (аденина (A), гуанина (G), урацила (U) и цитозина (C)), но в «зрелой» РНК есть много модифицированных оснований и сахаров. Всего в РНК насчитывается около 100 различных видов модифицированных нуклеозидов, из которых:
- 2"-О-метилрибоза наиболее частая модификация сахара;
- Псевдоуридин - наиболее часто модифицированная основа, которая встречается чаще всего. В псевдоуридине (Ψ) связь между урацилом и рибозой не C - N, а C - C, этот нуклеотид встречается в разных положениях в молекулах РНК. В частности, псевдоуридин важен для функционирования тРНК.

Еще одной модифицированной основой, о которой стоит сказать является - гипоксантин, деаминованний гуанин, нуклеозид которого носит название инозин . Инозин играет важную роль в обеспечении вырожденности генетического кода.

Роль многих других модификаций не до конца изучена, но в рибосомальной РНК много пост-транскрипционных модификаций находятся в важных для функционирования рибосомы участках. Например, на одном из рибонуклеотидов, участвующих в образовании пептидной связи. Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом. Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырех нуклеотидов, в которой есть пара оснований аденин - гуанин.

Важная структурная особенность РНК, отличающая ее от ДНК - наличие гидроксильной группы в 2 "положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, которая наиболее часто наблюдается в ДНК. В А-форме глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка. Второе последствие наличия 2 "гидроксильной группы состоит в том, что конформационно пластичные, то есть, не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять.

«Рабочая» форма одноцепочечной молекулы РНК, как и у белков, часто обладает третичной структурой. Третичная структура образуется на основе элементов вторичной структуры, образуется посредством водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры - стебель-петли, петли и псевдоузлы. В силу большого количества возможных вариантов спаривания оснований, предсказания вторичной структуры РНК - гораздо более сложная задача, чем структуры белков, но в настоящее время есть эффективные программы, например, mfold.

Примером зависимости функций молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (IRES). IRES - структура на 5 "конце информационной РНК, которая обеспечивает присоединение рибосомы в обход обычного механизма инициации синтеза белка, требует наличия особого модифицированного основания (кэпа) на 5" конце и белковых факторов инициации. Сначала IRES были обнаружены в вирусных РНК, но сейчас накапливается все больше данных о том, что клеточные мРНК также используют IRES-зависимый механизм инициации в условиях стресса. Многие типы РНК, например, рРНК и мяРНК (мяРНК) в клетке функционируют в виде комплексов с белками, которые ассоциируют с молекулами РНК после их синтеза или (у ) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами .

Матричная рибонуклеиновая кислота (мРНК, синоним - информационная РНК, иРНК) - РНК, отвечающая за перенос информации о первичной структуре белков от ДНК к местам синтеза белков. мРНК синтезируется на основе ДНК в ходе транскрипции, после чего, в свою очередь, используется при трансляции как матрица для синтеза белков. Тем самым мРНК играет важную роль в «проявлении» (экспрессии) .
Длина типичной зрелой мРНК составляет от нескольких сотен до нескольких тысяч нуклеотидов. Самые длинные мРНК отмечены у (+) оц РНК-содержащих вирусов, например пикорнавирусов, однако следует помнить, что у этих вирусов мРНК образует весь их геном.

Подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибировать из отдельных генов (например, рибосомальные РНК) или быть производными интронов. Классические, хорошо изученные типы некодирующих РНК - это транспортные РНК (тРНК) и рРНК, участвующие в процессе трансляции. Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание и лигирование молекул РНК. По аналогии с белками, способными катализировать химические реакции - энзимами (ферментами), каталитические молекулы РНК называются рибозимами.

Транспортные (тРНК) - малые, состоящие из примерно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты к месту синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодону мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединенной к тРНК.

Рибосомальные РНК (рРНК) - каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырех типов рРНК синтезируются на полисомах. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеины, называемые рибосомами. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80% РНК, обнаруживается в цитоплазме эукариотической клетки.

Необычный тип РНК, который действует в качестве тРНК и мРНК (тмРНК) обнаружен во многих бактериях и пластидах. При остановке рибосомы на дефектных мРНК без стоп-кодонов тмРНК присоединяет небольшой пептид, направляющий белок на деградацию.

Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и влияют через механизм РНК-интерференции. При этом комплекс микро-РНК и ферментов может приводит к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградирует. Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов.

Малые интерферирующие РНК (миРНК, 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК. Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам.

Сравнение с ДНК

Между ДНК и РНК есть три основных отличия:

1 . ДНК содержит сахар дезоксирибозу, РНК - рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.

2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил - неметилированная форма тимина.

3.
ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, намного короче и преимущественно одноцепочечные. Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образуют нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептид-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК.

Особенности функций:

1. Процессинг

Многие РНК принимают участие в модификации других РНК. Интроны вырезают из про-мРНК сплайсосомы, которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК). Кроме того, интроны могут катализировать собственное вырезание. Синтезированная в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышке и тельцах Кахаля. После ассоциации мяРНК с ферментами, мяРНК связывается с РНК-мишенью путем образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК.

2. Трансляция

ТРНК присоединяют определенные аминокислоты в цитоплазме и направляется к месту синтеза белка на иРНК где связывается с кодоном и отдает аминокислоту которая используется для синтеза белка.

3. Информационная функция

У некоторых вирусов РНК выполняет те функции которые ДНК выполняет у эукариот. Также информационную функцию выполняет иРНК которая переносит информацию о белках и является местом его синтеза.

4. Регуляция генов

Некоторые типы РНК участвуют в регуляции генов увеличивая или уменьшая его активность. Это так называемые миРНК (малые интерферирующие РНК) и микро-РНК.

5. Каталитическая функция

Есть так называемые ферменты которые относятся к РНК они называются рибозимы. Эти ферменты выполняют различные функции и имеют своеобразное строение

Различные виды ДНК и РНК - нуклеиновых кислот - это один из объектов изучения молекулярной биологии. Одним из наиболее многообещающих и быстро развивающихся направлений в этой науке в последние годы стало исследование РНК.

Кратко о строении РНК

Итак, РНК, рибонуклеиновая кислота, - это биополимер, молекула которого представляет собой цепочку, образованную четырьмя видами нуклеотидов. Каждый нуклеотид, в свою очередь, состоит из азотистого основания (аденина А, гуанина Г, урацила У либо цитозина Ц) в соединении с сахаром рибозой и остатком фосфорной кислоты. Фосфатные остатки, соединяясь с рибозами соседних нуклеотидов, «сшивают» составные блоки РНК в макромолекулу - полинуклеотид. Так образуется первичная структура РНК.

Вторичная структура - образование двойной цепочки - образуется на некоторых участках молекулы в соответствии с принципом комплементарности азотистых оснований: аденин образует пару с урацилом посредством двойной, а гуанин с цитозином - тройной водородной связи.

В рабочей форме молекула РНК образует также третичную структуру - особое пространственное строение, конформацию.

Синтез РНК

Все виды РНК синтезируются при помощи фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК, так и на РНК-матрице.

Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода и протекает в несколько этапов.

Сначала происходит узнавание и связывание РНК-полимеразы с особой последовательностью нуклеотидов на ДНК - промотором, после чего двойная спираль ДНК раскручивается на небольшом участке и начинается сборка молекулы РНК над одной из цепочек, называемой матричной (другая цепочка ДНК называется кодирующей - именно ее копией является синтезируемая РНК). Асимметричность промотора определяет, какая из цепочек ДНК будет служить матрицей, и тем самым позволяет РНК-полимеразе инициировать синтез в правильном направлении.

Следующий этап называется элонгацией. Транскрипционный комплекс, включающий РНК-полимеразу и расплетенный участок с гибридом ДНК-РНК, начинает движение. По мере этого перемещения наращиваемая цепочка РНК постепенно отделяется, а двойная спираль ДНК расплетается перед комплексом и восстанавливается за ним.

Завершающий этап синтеза наступает, когда РНК-полимераза достигает особого участка матрицы, называемого терминатором. Терминация (окончание) процесса может достигаться различными способами.

Основные виды РНК и их функции в клетке

Они следующие:

  • Матричная или информационная (мРНК). Посредством ее осуществляется транскрипция - перенос генетической информации с ДНК.
  • Рибосомная (рРНК), обеспечивающая процесс трансляции - синтез белка на матрице мРНК.
  • Транспортная (тРНК). Производит узнавание и транспортировку аминокислоты на рибосому, где происходит синтез белка, а также принимает участие в трансляции.
  • Малые РНК - обширный класс молекул небольшой длины, осуществляющих разнообразные функции в ходе процессов транскрипции, созревания РНК, трансляции.
  • РНК-геномы - кодирующие последовательности, которые содержат генетическую информацию у некоторых вирусов и вироидов.

В 1980-х годах была открыта каталитическая активность РНК. Молекулы, обладающие этим свойством, получили название рибозимов. Естественных рибозимов пока известно не так много, каталитическая способность их ниже, чем у белков, однако в клетке они выполняют исключительно важные функции. В настоящее время ведутся успешные работы по синтезу рибозимов, имеющие в том числе и прикладное значение.

Остановимся подробнее на различных видах молекул РНК.

Матричная (информационная) РНК

Эта молекула синтезируется над расплетенным участком ДНК, копируя таким образом ген, кодирующий тот или иной белок.

РНК эукариотических клеток, прежде чем стать, в свою очередь, матрицей для синтеза белка, должны созреть, то есть пройти через комплекс различных модификаций - процессинг.

Прежде всего, еще на стадии транскрипции, молекула подвергается кэпированию: к ее концу присоединяется особая структура из одного или нескольких модифицированных нуклеотидов - кэп. Он играет важную роль во многих последующих процессах и повышает стабильность мРНК. К другому концу первичного транскрипта присоединяется так называемый поли(А)хвост - последовательность адениновых нуклеотидов.

После этого пре-мРНК подвергается сплайсингу. Это удаление из молекулы некодирующих участков - интронов, которых много в ДНК эукариот. Далее происходит процедура редактирования мРНК, при которой химически модифицируется ее состав, а также метилирование, после чего зрелая мРНК покидает клеточное ядро.

Рибосомная РНК

Основу рибосомы - комплекса, обеспечивающего белковый синтез, составляют две длинные рРНК, которые образуют субчастицы рибосомы. Синтезируются они совместно в виде одной пре-рРНК, которая затем в ходе процессинга разделяется. В большую субчастицу входит также низкомолекулярная рРНК, синтезируемая с отдельного гена. Рибосомные РНК обладают плотно упакованной третичной структурой, которая служит каркасом для белков, присутствующих в рибосоме и выполняющих вспомогательные функции.

В нерабочей фазе субъединицы рибосомы разделены; при инициации трансляционного процесса рРНК малой субчастицы соединяется с матричной РНК, после чего происходит полное объединение элементов рибосомы. При взаимодействии РНК малой субчастицы с мРНК последняя как бы протягивается через рибосому (что равнозначно движению рибосомы по мРНК). Рибосомная РНК большой субчастицы является рибозимом, то есть обладает ферментными свойствами. Она катализирует образование пептидных связей между аминокислотами в ходе синтеза белка.

Следует отметить, что наибольшая часть всей РНК в клетке приходится на долю рибосомной - 70-80 %. ДНК обладает большим количеством генов, кодирующих рРНК, что обеспечивает весьма интенсивную ее транскрипцию.

Транспортная РНК

Эта молекула распознается определенной аминокислотой при помощи особого фермента и, соединяясь с ней, производит транспортировку аминокислоты на рибосому, где служит посредником в процессе трансляции - синтеза белка. Перенос осуществляется путем диффузии в цитоплазме клетки.

Вновь синтезированные молекулы тРНК, так же как и другие виды РНК, подвергаются процессингу. Зрелая тРНК в активной форме имеет конформацию, напоминающую клеверный лист. На «черешке» листа - акцепторном участке - расположена последовательность ЦЦА с гидроксильной группой, которая связывается с аминокислотой. На противоположном конце «листа» находится антикодоновая петля, которая соединяется с комплементарным кодоном на мРНК. D-петля служит для связывания транспортной РНК с ферментом при взаимодействии с аминокислотой, а Т-петля - для связывания с большой субчастицей рибосомы.

Малые РНК

Эти виды РНК играют важную роль в клеточных процессах и сейчас активно изучаются.

Так, например, малые ядерные РНК в клетках эукариот участвуют в сплайсинге мРНК и, возможно, обладают каталитическими свойствами наряду с белками сплайсосом. Малые ядрышковые РНК участвуют в процессинге рибосомной и транспортной РНК.

Малые интерферирующие и микроРНК являются важнейшими элементами системы регуляции экспрессии генов, необходимой клетке для контроля собственной структуры и жизнедеятельности. Эта система - важная часть иммунного антивирусного ответа клетки.

Существует также класс малых РНК, функционирующих в комплексе с белками Piwi. Эти комплексы играют огромную роль в развитии клеток зародышевой линии, в сперматогенезе и в подавлении мобильных генетических элементов.

РНК-геном

Молекула РНК может использоваться в качестве генома большинством вирусов. Вирусные геномы бывают различными - одно- и двухцепочечными, кольцевыми или линейными. Также РНК-геномы вирусов часто бывают сегментированы и в целом короче, чем ДНК-содержащие геномы.

Существует семейство вирусов, генетическая информация которых, закодированная в РНК, после инфицирования клетки путем обратной транскрипции переписывается на ДНК, которая затем внедряется в геном клетки-жертвы. Это так называемые ретровирусы. К ним, в частности, относится вирус иммунодефицита человека.

Значение исследования РНК в современной науке

Если прежде преобладало мнение о второстепенной роли РНК, то ныне ясно, что она - необходимый и важнейший элемент внутриклеточной жизнедеятельности. Множество процессов первостепенной значимости не обходятся без активного участия РНК. Механизмы таких процессов долгое время оставались неизвестными, но благодаря исследованию различных видов РНК и их функций постепенно проясняются многие детали.

Не исключено, что РНК сыграла решающую роль в возникновении и становлении жизни на заре истории Земли. Результаты недавних исследований говорят в пользу этой гипотезы, свидетельствуя о необычайной древности многих механизмов функционирования клетки с участием тех или иных видов РНК. Например, недавно открытые рибопереключатели в составе мРНК (система безбелковой регуляции активности генов на стадии транскрипции), по мнению многих исследователей, являются отголосками эпохи, когда примитивная жизнь строилась на основе РНК, без участия ДНК и белков. Также весьма древним компонентом системы регуляции считаются микроРНК. Особенности структуры каталитически активной рРНК свидетельствуют о ее постепенной эволюции путем присоединения новых фрагментов к древней проторибосоме.

Тщательное изучение того, какие виды РНК и каким образом заняты в тех или иных процессах, исключительно важно также для теоретических и прикладных областей медицины.

Цитоло́гия (греч. κύτος - «вместилище», здесь: «клетка» и λόγος - «учение», «наука») - раздел биологии , изучающий живые клетки , их органоиды , их строение, функционирование, процессы клеточного размножения, старения и смерти.

Также используются термины клеточная биология , биология клетки (англ. Cell Biology ).

Возникновение и развитие цитологии

Рисунок Роберта Гука, изображающий срез пробковой ткани под микроскопом (из книги «Микрография», 1664 год)

Термин «клетка» впервые употребил Роберт Гук в 1665 году , при описании своих «исследований строения пробки с помощью увеличительных линз». В 1674 году Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы . В 1838-1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория » и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории - самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнением клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова , что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз . Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом число хромосом также удваивается, но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом - кариотип - одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитолоогические открытия легли в основу хромосомной теории наследственности .

Клиническая цитология

Клиническая цитология является разделом лабораторной диагностики и носит описательный характер. В частности, важным разделом клинической цитологии является онкоцитология, перед которой ставится задача диагностики новообразований.

Рибонуклеи́новая кисло́та (РНК ) - одна из трёх основных макромолекул (две другие - ДНК и белки ), которые содержатся в клетках всех живых организмов .

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом азотистого основания , сахара рибозы и фосфатной группы . Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию . Все клеточные организмы используют РНК (мРНК ) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами . Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией . Трансляция - это синтез белка на матрице мРНК при участии рибосом . Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы ), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами .

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК - первая молекула, которая была способна к самовоспроизведению в добиологических системах.

История изучения

Нуклеиновые кислоты были открыты в 1868 году швейцарским учёным Иоганном Фридрихом Мишером , который назвал эти вещества «нуклеин», поскольку они были обнаружены в ядре (лат. nucleus ) . Позже было обнаружено, что бактериальные клетки, в которых нет ядра, тоже содержат нуклеиновые кислоты. Значение РНК в синтезе белков было предположено в 1939 году в работе Торбьёрна Оскара Касперссона , Жана Брачета и Джека Шульца. Джерард Маирбакс выделил первую матричную РНК , кодирующую гемоглобин кролика и показал, что при её введении в ооциты образуется тот же самый белок. В 1956-1957 годах проводились работы (А. Белозёрский , А. Спирин , Э. Волкин, Л. Астрахан) по определению состава РНК клеток, которые привели к выводу, что основную массу РНК в клетке составляет рибосомальная РНК. Северо Очоа получил Нобелевскую премию по медицине в 1959 году за открытие механизма синтеза РНК. Последовательность 77 нуклеотидов одной из тРНК дрожжей S. cerevisiae была определена в 1965 году в лаборатории Роберта Холея, за что в 1968 году он получил Нобелевскую премию по медицине. В 1967 Карл Вёзе предположил, что РНК обладают каталитическими свойствами. Он выдвинул так называемую Гипотезу РНК-мира , в котором РНК прото-организмов служила и в качестве молекулы хранения информации (сейчас эта роль выполняется в основном ДНК ) и молекулы, которая катализировала метаболические реакции (сейчас это делают в основном ферменты ). В 1976 Уолтер Фаэрс и его группа в Гентском Университете (Голландия) определили первую последовательность генома РНК-содержащего вируса , бактериофага MS2. В начале 1990-х было обнаружено, что введение чужеродных генов в геном растений приводит к подавлению выражения аналогичных генов растения. Приблизительно в это же время было показано, что РНК длиной около 22 оснований, которые сейчас называются микроРНК , играют регуляторную роль в онтогенезе нематод C. elegans .

Химический состав и модификации мономеров

Химическое строение полинуклеотида РНК

Нуклеотиды РНК состоят из сахара - рибозы , к которой в положении 1" присоединено одно из оснований: аденин , гуанин , цитозин или урацил . Фосфатная группа соединяет рибозы в цепочку, образуя связи с 3" атомом углерода одной рибозы и в 5" положении другой. Фосфатные группы при физиологическом рН отрицательно заряжены, поэтому РНК - полианион . РНК транскрибируется как полимер четырёх оснований (аденина (A), гуанина (G), урацила (U) и цитозина (C), но в «зрелой» РНК есть много модифицированных оснований и сахаров . Всего в РНК насчитывается около 100 разных видов модифицированных нуклеотидов, из которых 2"-О-метилрибоза наиболее частая модификация сахара, а псевдоуридин - наиболее часто встречающееся модифицированное основание .

У псевдоуридина (Ψ) связь между урацилом и рибозой не C - N, а C - C, этот нуклеотид встречается в разных положениях в молекулах РНК. В частности, псевдоуридин важен для функционирования тРНК . Другое заслуживающее внимания модифицированное основание - гипоксантин , деаминированный гуанин, нуклеозид которого носит название инозина . Инозин играет важную роль в обеспечении вырожденности генетического кода .

Роль многих других модификаций не до конца изучена, но в рибосомальной РНК многие пост-транскрипционные модификации находятся в важных для функционирования рибосомы участках. Например, на одном из рибонуклеотидов, участвующем в образовании пептидной связи .

Структура

Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом . Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин - гуанин .

Разные формы нуклеиновых кислот. На рисунке (слева направо) представлены A (типична для РНК), B (ДНК) и Z (редкая форма ДНК)

Важная структурная особенность РНК, отличающая её от ДНК - наличие гидроксильной группы в 2" положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК . У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка . Второе последствие наличия 2" гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять .

«Рабочая» форма одноцепочечной молекулы РНК, как и у белков , часто обладает третичной структурой. Третичная структура образуется на основе элементов вторичной структуры, образуемой с помощью водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры - стебель-петли, петли и псевдоузлы . В силу большого числа возможных вариантов спаривания оснований предсказание вторичной структуры РНК - гораздо более сложная задача, чем предсказание вторичной структуры белков, но в настоящее время есть эффективные программы, например, mfold .

Примером зависимости функции молекул РНК от их вторичной структуры являются участки внутренней посадки рибосомы (IRES ). IRES - структура на 5" конце информационной РНК, которая обеспечивает присоединение рибосомы в обход обычного механизма инициации синтеза белка, требующего наличия особого модифицированного основания (кэпа ) на 5" конце и белковых факторов инициации. Первоначально IRES были обнаружены в вирусных РНК, но сейчас накапливается всё больше данных о том, что клеточные мРНК также используют IRES-зависимый механизм инициации в условиях стресса .

Многие типы РНК, например, рРНК и мяРНК в клетке функционируют в виде комплексов с белками, которые ассоциируют с молекулами РНК после их синтеза или (у эукариот) экспорта из ядра в цитоплазму. Такие РНК-белковые комплексы называются рибонуклеопротеиновыми комплексами или рибонуклеопротеидами .

Сравнение с ДНК

Между ДНК и РНК есть три основных отличия:

    ДНК содержит сахар дезоксирибозу , РНК - рибозу , у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа . Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.

    Нуклеотид , комплементарный аденину, в РНК не тимин , как в ДНК, а урацил - неметилированная форма тимина.

    ДНК существует в форме двойной спирали , состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК , рРНК , мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка . В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК .

Синтез

Синтез РНК в живой клетке проводится ферментом - РНК-полимеразой . У эукариот разные типы РНК синтезируются разными, специализированными РНК-полимеразами. В целом матрицей синтеза РНК может выступать как ДНК, так и другая молекула РНК. Например, полиовирусы используют РНК-зависимую РНК-полимеразу для репликации своего генетического материала, состоящего из РНК . Но РНК-зависимый синтез РНК, который раньше считался характерным только для вирусов, происходит и в клеточных организмах, в процессе так называемой РНК-интерференции .

Как в случае ДНК-зависимой РНК-полимеразы, так и в случае РНК-зависимой РНК-полимеразы фермент присоединяется к промоторной последовательности. Вторичная структура молекулы матрицы расплетается с помощью хеликазной активности полимеразы, которая при движении субстрата в направлении от 3" к 5" концу молекулы синтезирует РНК в направлении 5" → 3". Терминатор транскрипции в исходной молекуле определяет окончание синтеза. Многие молекулы РНК синтезируются в качестве молекул-предшественников, которые подвергаются «редактированию» - удалению ненужных частей с помощью РНК-белковых комплексов .

Например, у кишечной палочки гены рРНК расположены в составе одного оперона (в rrnB порядок расположения такой: 16S - tRNA Glu 2 - 23S -5S) считываются в виде одной длинной молекулы, которая затем подвергается расщеплению в нескольких участках с образованием сначала пре-рРНК, а затем зрелых молекул рРНК . Процесс изменения нуклеотидной последовательности РНК после синтеза носит название процессинга или редактирования РНК.

После завершения транскрипции РНК часто подвергается модификациям (см. выше), которые зависят от функции, выполняемой данной молекулой. У эукариот процесс «созревания» РНК, то есть её подготовки к синтезу белка, часто включает сплайсинг : удаление некодирующих белок последовательностей (интронов ) с помощью рибонуклеопротеида сплайсосомы . Затем к 5" концу молекулы пре-мРНК эукариот добавляется особый модифицированный нуклеотид (кэп ), а к 3" концу несколько аденинов , так назваемый «полиА-хвост» .

Типы РНК

Матричная (информационная) РНК - РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка . Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК ) или быть производными интронов . Классические, хорошо изученные типы некодирующих РНК - это транспортные РНК (тРНК ) и рРНК, которые участвуют в процессе трансляции . Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание и лигирование молекул РНК . По аналогии с белками, способными катализировать химические реакции - энзимами (ферментами ), каталитические молекулы РНК называются рибозимами .

Участвующие в трансляции

Основные статьи: мРНК , тРНК , рРНК , тмРНК

Роль разных типов РНК в синтезе белка (по Уотсону )

Информация о последовательности аминокислот белка содержится в мРНК . Три последовательных нуклеотида (кодон ) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов ). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК.

В безъядерных клетках (бактерии и археи ) рибосомы могут присоединяться к мРНК сразу после транскрипции участка РНК. И у эукариот, и у прокариот цикл жизни мРНК завершается её контролируемым разрушением ферментами рибонуклеазами .

Транспортные (тРНК ) - малые, состоящие из приблизительно 80 нуклеотидов , молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК .

Рибосомальные РНК (рРНК) - каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S , 5.8S , 28S и 5S . Три из четырёх типов рРНК синтезируются в ядрышке . В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин , называемый рибосомой . Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки .

Необычный тип РНК, который действует в качестве тРНК и мРНК (тмРНК) обнаружен во многих бактериях и пластидах . При остановке рибосомы на дефектных мРНК без стоп-кодонов тмРНК присоединяет небольшой пептид, направляющий белок на деградацию .

Участвующие в регуляции генов

Основная статья: РНК-интерференция

В живых клетках обнаружено несколько типов РНК, которые могут уменьшать степень выражения гена при комплементарности мРНК или самому гену. Микро-РНК (21-22 нуклеотида в длину) найдены у эукариот и оказывают воздействие через механизм РНК-интерференции . При этом комплекс микро-РНК и ферментов может приводить к метилированию нуклеотидов в ДНК промотора гена, что служит сигналом для уменьшения активности гена. При использовании другого типа регуляции мРНК, комплементарная микро-РНК, деградируется . Однако есть и миРНК, которые увеличивают, а не уменьшают экспрессию генов . Малые интерферирующие РНК (миРНК , 20-25 нуклеотидов) часто образуются в результате расщепления вирусных РНК, но существуют и эндогенные клеточные миРНК . Малые интерферирующие РНК также действуют через РНК-интерференцию по сходным с микро-РНК механизмам . У животных найдены так называемыме РНК, взаимодействующие с Piwi (piRNA , 29-30 нуклеотидов), действующие в половых клетках против транспозиции и играющие роль в образовании гамет . Кроме того, piRNA могут эпигенетически наследоваться по материнской линии, передавая потомству своё свойство ингибировать экспрессию транспозонов .

Антисмысловые РНК широко распространены у бактерий, многие из них подавляют выражение генов, но некоторые активируют экспрессию . Действуют антисмысловые РНК, присоединяясь к мРНК, что приводит к образованию двуцепочечных молекул РНК, которые деградируются ферментами. . У эукариот обнаружены высокомолекулярные, мРНК-подобные молекулы РНК. Эти молекулы также регулируют выражение генов . В качестве примера можно привести Xist, присоединяющуюся и инактивирующую одну из двух Х-хромосом у самок млекопитающих .

Кроме роли отдельных молекул в регуляции генов, регуляторные элементы могут формироваться в 5" и 3" нетранслируемых участках мРНК. Эти элементы могут действовать самостоятельно, предотвращая инициацию трансляции, либо присоединять белки, например, ферритин или малые молекулы, например, биотин .

В процессинге РНК

Основные статьи: Биосинтез белка , Сплайсосома , малые ядерные РНК

Многие РНК принимают участие в модификации других РНК. Интроны вырезаются из пре-мРНК сплайсосомами , которые, кроме белков, содержат несколько малых ядерных РНК (мяРНК) . Кроме того, интроны могут катализировать собственное вырезание . Синтезированая в результате транскрипции РНК также может быть химически модифицирована. У эукариот химические модификации нуклеотидов РНК, например, их метилирование, выполняется малыми ядерными РНК (мяРНК, 60-300 нуклеотидов). Этот тип РНК локализуется в ядрышко и тельцах Кахаля . После ассоциации мяРНК с ферментами, мяРНК связываются с РНК-мишенью путём образования пар между основаниями двух молекул, а ферменты модифицируют нуклеотиды РНК-мишени. Рибосомальные и транспортные РНК содержат много подобных модификаций, конкретное положение которых часто сохраняется в процессе эволюции. Также могут быть модифицированы мяРНК и сами мяРНК . Гидовые РНК осуществляют процесс редактирования РНК в кинетопласте - особом участке митохондрии протистов-кинетопластид (например, трипаносом ).

Геномы, состоящие из РНК

Жизненный цикл вируса с РНК геномом на примере полиовируса: 1 - присоединение исходного вириона к рецептору; 2 - вирион попадает в клетку; 3 - трансляция белков вируса с его РНК с образованием полипетида; 4 - полимеразы вируса размножают его РНК

Как и ДНК, РНК может хранить информацию о биологических процессах. РНК может использоваться в качестве генома вирусов и вирусоподобных частиц. РНК-геномы можно разделить на те, которые не имеют промежуточной стадии ДНК и те, которые для размножения копируются в ДНК-копию и обратно в РНК (ретровирусы ).

Основная статья: Вирусы

Многие вирусы, например, вирус гриппа , на всех стадиях содержат геном, состоящий исключительно из РНК. РНК содержится внутри обычно белковой оболочки и реплицируется с помощью закодированных в ней РНК-зависимых РНК-полимераз. Вирусные геномы, состоящие из РНК разделяются на

    «минус-цепь РНК», которая служит только геномом, а в качестве мРНК используется комплементарная ей молекула;

    двухцепоченые вирусы.

Вироиды - другая группа патогенов, содержащих РНК-геном и не содержащих белок. Они реплицируются РНК-полимеразами организма хозяина .

Ретровирусы и ретротранспозоны

У других вирусов РНК-геном есть в течение только одной из фаз жизненного цикла. Вирионы так называемых ретровирусов содержат молекулы РНК, которые при попадании в клетки хозяина служат матрицей для синтеза ДНК-копии. В свою очередь, с матрицы ДНК считывается РНК-геном. Кроме вирусов обратную транскрипции применяют и класс мобильных элементов генома - ретротранспозоны .

Гипотеза РНК-мира

Основная статья: Гипотеза РНК-мира

Способность молекул РНК одновременно служить как в качестве носителя информации, так и в качестве катализатора химических реакций, позволила выдвинуть гипотезу о том, что РНК была первым сложным полимером, появившимся в процессе добиологической эволюции. Эта гипотеза названа «гипотеза РНК-мира» . Согласно ей, РНК на первых этапах эволюции автокатализировала синтез других молекул РНК, а затем и ДНК. На втором этапе эволюции синтезированные молекулы ДНК, как более стабильные, стали хранилищем генетической информации. Синтез белка на матрице РНК с помощью пра-рибосом, полностью состоящих из РНК, расширил свойства добиологических систем, постепенно белок заменил РНК в структурных аспектах. Из этой гипотезы делается вывод, что многие РНК, принимающие участие в синтезе белка в современных клетках, в особенности рРНК и тРНК - это реликты РНК-мира.

Дезоксирибонуклеи́новая кислота́ (ДНК ) - макромолекула (одна из трех основных, две другие - РНК и белки ), обеспечивающая хранение , передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов . Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков .

В клетках эукариот (например, животных или растений ) ДНК находится в ядре клетки в составе хромосом , а также в некоторых клеточных органоидах (митохондриях и пластидах ). В клетках прокариотических организмов (бактерий и архей ) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей ) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами . Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов .

С химической точки зрения ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов . Каждый нуклеотид состоит из азотистого основания , сахара (дезоксирибозы ) и фосфатной группы . Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы. В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».