Формула карбоновой кислоты. Карбоновые кислоты: физические свойства. Соли карбоновых кислот Строение непредельных карбоновых кислот

Как вы уже знаете, общим способом получения карбоновых кислот может служить окисление соответствующего альдегида согласно уравнению

В промышленности этот процесс проводят с помощью кислорода воздуха в присутствии катализаторов.

Анализируя общую формулу карбоновых кислот, можно заметить, что в состав ее молекулы входят две части - углеводородный радикал (алкил) и функциональная группа

которую называют карбоксильной. Название функциональной группы произошло от названий образующих ее карбонила >С=0 и гидроксила -ОН.

Класс карбоновых кислот чрезвычайно многообразен. В него входят одно-, двух- и многоосновные кислоты, непредельные и ароматические. Но эти подклассы карбоновых кислот являются предметом изучения в школах и классах естественнонаучного профиля. Мы лишь упомянем о двух непредельных кислотах: С 17 Н 33 СООН - олеиновой кислоте (содержит в молекуле одну двойную связь) (рис. 50) и С 17 Н 31 СООН - линолевой кислоте (содержит в молекуле две двойные связи). Эти кислоты называют жирными, и теперь, очевидно, вам стало понятно, почему мы обращаем ваше внимание на эти кислоты - они входят в состав жидких жиров.

Рис. 50.
Масштабная модель молекулы олеиновой кислоты

Однако вернемся к предельным одноосновным карбоновым кислотам. Начинает гомологический ряд этих кислот соединение, которое не полностью отвечает приведенному выше определению, - муравьиная, или метановая, кислота

Как видно, карбоксил в ее молекуле связан не с углеводородным радикалом, а с атомом водорода, как и карбонил в муравьином альдегиде (рис. 51).

Рис. 51.
Модель молекулы муравьиной (метановой) кислоты:

Очевидно, что названия кислот и соответствующих им альдегидов идентичны.

То, что строение муравьиной кислоты отличается от строения молекул других одноосновных карбоновых кислот, обусловливает и особенности ее химических свойств. Она вступает в реакцию «серебряного зеркала» подобно альдегидам, так как ее молекула представляет собой синтез двух функциональных групп: карбонильной и карбоксильной.

Муравьиная кислота - это жидкость с резким запахом (t кип = 100,8 °С), хорошо растворимая в воде. Муравьиная кислота ядовита! При попадании на кожу она вызывает ожоги. Жалящая жидкость, выделяемая муравьями, крапивой, некоторыми видами медуз, содержит эту кислоту (рис. 52).

Рис. 52.
Муравьиную кислоту содержит жалящая жидкость:
1 - медуз; 2 - крапивы; 3 - муравьев

Муравьиная кислота обладает дезинфицирующим действием и поэтому находит применение в пищевой, кожевенной и фармацевтической промышленности, а также в медицине. Кроме этого, ее используют при крашении тканей и бумаги (рис. 53).

Рис. 53.
Применение муравьиной кислоты:
1 - кожевенная промышленность; 2 - крашение тканей; 3 - медицина

Уксусная, или этановая, кислота

(рис. 54) - это бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием «столовый уксус» (3-5%-й раствор), «уксусная эссенция» (70-80%-й раствор) и широко используются в пищевой промышленности.

Рис. 54.
Модель молекулы уксусной (этановой) кислоты:
1 - шаростержневая; 2 - масштабная

Уксусная кислота - хороший растворитель многих органических соединений, применяется при крашении, в кожевенном производстве, лакокрасочной промышленности (рис. 55). Кроме этого, уксусная кислота является исходным сырьем для производства многих важных в техническом отношении органических соединений: искусственных волокон, ядохимикатов, кино- и фотопленок и т. д. Уксусная кислота чрезвычайно опасна при попадании на кожу, поэтому необходимо соблюдать меры безопасности при работе с уксусной эссенцией.

Рис. 55.
Применение уксусной кислоты:
1 - консервирование; 2 - производство искусственных волокон, тканей; 3 - приправа к пище; 4-8 - производство органических соединений (пестицидов 4, лаков 5, красок 6, фотопленки 7, клея 8)

С увеличением относительной молекулярной массы в гомологическом ряду предельных одноосновных карбоновых кислот увеличиваются их плотность, температуры кипения и плавления, уменьшается растворимость в воде.

Высшие карбоновые кислоты, также называемые жирными (догадались почему), являются твердыми веществами. Это, например, пальмитиновая С 15 Н 31 СООН (рис. 56, 1) и стеариновая С 17 Н 35 СООН кислоты (рис. 56, 2).

Рис. 56.
Масштабные модели молекул:
1 - пальмитиновой кислоты; 2 - стеариновой кислоты

Химические свойства карбоновых кислот определяются в первую очередь их принадлежностью к типу кислот вообще. Подобно неорганическим кислотам, карбоновые кислоты являются электролитами, правда очень слабыми, а потому диссоциируют обратимо:

Водные растворы карбоновых кислот изменяют окраску индикаторов.

С увеличением углеводородного радикала происходит уменьшение степени электролитической диссоциации.

Как и неорганические кислоты, карбоновые взаимодействуют с металлами, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и солями.

Так, муравьиная и уксусная кислоты взаимодействуют с металлами, стоящими в электрохимическом ряду напряжений до водорода:

Эти кислоты реагируют с основными и амфотерными оксидами с образованием солей - формиатов и ацетатов:

Аналогично муравьиная и уксусная кислоты взаимодействуют с основаниями и амфотерными гидроксидами:

Взаимодействуют эти кислоты с солями более слабых кислот. Реакции идут до конца, если образуется осадок или газ:

Органические кислоты, как вы уже знаете, вступают в реакцию этерификации со спиртами, образуя сложные эфиры, согласно уравнению

Новые слова и понятия

  1. Карбоксильная группа.
  2. Карбоновые кислоты. Предельные одноосновные карбоновые кислоты.
  3. Непредельные карбоновые кислоты: олеиновая и линолевая.
  4. Муравьиная и уксусная кислоты.
  5. Свойства карбоновых кислот: взаимодействие с металлами, основными и амфотерными оксидами, основаниями, амфотерными гидроксидами и солями.
  6. Формиаты и ацетаты.
  7. Реакция этерификации. Сложные эфиры.
  8. Применение карбоновых кислот.

Вопросы и задания

1. Карбоновые кислоты – это кислородсодержащие органически вещества, молекулы которых содержат одну или несколько карбоксильных групп

(-С OOH ), соединённых с углеродным радикалом или водородным атомом.

Карбоксильная группа содержит две функциональные группы – карбонил >С=О и гидроксил -OH, непосредственно связанные друг с другом:

2. Классификация

А) По числу карбоксильных групп в молекуле

Название

Примеры

1) Одноосновные

Метановая , муравьиная кислота

Этановая , уксусная кислота

2) Двухосновные

HOOC – COOH

Щавелевая кислота

3) Многоосновные

Б) По природе углеводородного радикала

Название

Примеры

1) Предельные (насыщенные)

HCOOH

Метановая , муравьиная кислота

CH 3 COOH

Этановая , уксусная кислота

2) Непредельные

Акриловая кислота

СН 2 =СНСООН

Кротоновая кислота

СН 3 –СН=СН–СООН

Олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН

Линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН

Линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН

3) Ароматические

С 6 Н 5 СООН – бензойная кислота

НООС–С 6 Н 4 –СООН Пара -терефталевая кислота

3. Изомерия и номенклатура

I . Структурная

А) Изомерия углеродного скелета (начиная с C 4 )

Б) Межклассовая со сложными эфирами R - CO – O - R 1 (начиная с C 2 )

Например: для С 3 Н 6 О 2

CH 3 -CH 2 -COOH пропионовая кислота

СH 3 -CO -OCH 3 метиловый эфир уксусной кислоты

II . Пространственная

А) Оптическая

Например:

Б) Цис- транс – изомериядля непредельных кислот

Пример:

4. Номенклатура карбоновых кислот

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса -овая и слова кислота .

Чтобы указать положение заместителя (или радикала), нумерацию углеродной цепи начинают от атома углерода карбоксильной группы. Например, соединение с разветвленной углеродной цепью (CH 3) 2 CH-CH 2 -COOH называется 3-метилбутановая кислота . Для органических кислот широко используются также тривиальные названия, которые обычно отражают природный источник, где были впервые обнаружены эти соединения.

Некоторые одноосновные кислоты

Формула

Название кислоты R-COOH

Название остатка RCOO -

систематическое

тривиальное

HCOOH

метановая

муравьиная

формиат

CH 3 COOH

этановая

уксусная

ацетат

C 2 H 5 COOH

пропановая

пропионовая

пропионат

C 3 H 7 COOH

бутановая

масляная

бутират

C 4 H 9 COOH

пентановая

валерьяновая

валерат

C 5 H 11 COOH

гексановая

капроновая

капрат

C 15 H 31 COOH

гексадекановая

пальмитиновая

пальмитат

C 17 H 35 COOH

октадекановая

стеариновая

стеарат

C 6 H 5 COOH

бензолкарбоновая

бензойная

бензоат

CH 2 =СH-COOH

пропеновая

акриловая

акрилат

Для многоосновных кислот применяют суффиксы -диовая, -триовая и т.д.

Например:

HOOC-COOH - этандиовая (щавелевая) кислота;

HOOC-CH 2 -COOH - пропандиовая (малоновая) кислота.

ПРЕДЕЛЬНЫЕ ОДНООСНОВНЫЕ КАРБОНОВЫЕ КИСЛОТЫ

C n H 2 n +1 - COOH или C n H 2 n O 2

Гомологический ряд

Название

Формула

кислоты

t пл.
°C

t кип.
°C

ρ
г/см 3

кислоты

муравьиная

метановая

HCOOH

100,5

1,22

уксусная

этановая

CH 3 COOH

16,8

1,05

пропионовая

пропановая

CH 3 CH 2 COOH

0,99

масляная

бутановая

CH 3 (CH 2) 2 COOH

0,96

Строение карбоксильной группы

Карбоксильная группа сочетает в себе две функциональные группы – карбонил >C =O и гидроксил -OH , взаимно влияющие друг на друга:

Кислотные свойства карбоновых кислот обусловлены смещением электронной плотности к карбонильному кислороду и вызванной этим дополнительной (по сравнению со спиртами) поляризации связи О–Н.
В водном растворе карбоновые кислоты диссоциируют на ионы:

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

С увеличением молекулярной массы растворимость кислот в воде уменьшается.

Физические свойства предельных одноосновных кислот

Низшие члены этого ряда при обычных условиях представляют собой жидкости, обладающие характерным острым запахом. Например, этановая (уксусная) кислота имеет характерный "уксусный" запах. Безводная уксусная кислота при комнатной температуре представляет собой жидкость; при 17 °С она замерзает, превращаясь в льдистое вещество, которое получило название "ледяная" уксусная кислота. Средние представители этого гомологического ряда - вязкие, "маслообразные" жидкости; начиная с С 10 - твердые вещества.

Простейший представитель – муравьиная кислота НСООН – бесцветная жидкость с т. кип. 101 °С, а чистая безводная уксусная кислота CH 3 COOH при охлаждении до 16,8 °С превращается в прозрачные кристаллы, напоминающие лед (отсюда ее название ледяная кислота ).
Простейшая ароматическая кислота - бензойная C 6 H 5 COOH (т. пл. 122,4°С) - легко возгоняется, т.е. переходит в газообразное состояние, минуя жидкое. При охлаждении её пары сублимирутся в кристаллы. Это свойство используется для очистки вещества от примесей.

.
O

//
Группа атомов -С называется карбоксильной группой или карбоксилом.
\

OH
Органические кислоты, содержащие в молекуле одну карбоксильную группу, являются одноосновными. Общая формула этих кислот RCOOН.

Карбоновые кислоты, содержащие две карбоксильные группы, называются двухосновными. К ним относятся, например, щавелевая и янтарная кислоты.

Существуют и многоосновные карбоновые кислоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота. В зависимости от природы углеводородного радикала карбоновые кислоты делятся на предельные, непредельные, ароматические.

Предельными, или насыщенными, карбоновыми кислотами являются, например, пропановая (пропионовая) кислота или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат п -связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, непредельным углеводородным радикалом, например в молекулах акриловой (пропеновой) СН2=СН-СООН или олеиновой СН3-(СН2)7-СН= СН-(СН2)7-СООН и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической, так как содержит в молекуле ароматическое (бензольное) кольцо.

Номенклатура и изомерия

Общие принципы образования названий карбоновых кислот, как и других органических соединений, мы уже рассматривали. Остановимся подробнее на номенклатуре одно- и двухосновных карбоновых кислот. Название карбоновой кислоты образуется от названия соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлением суффикса -ов, окончания -ая и слова кислота. Нумерация атомов углерода начинается с карбоксильной группы. Например:

Многие кислоты имеют и исторически сложившиеся, или тривиальные, названия (табл. 6).

После первого знакомства с многообразным и интересным миром органических кислот рассмотрим более подробно предельные одноосновные карбоновые кислоты.

Понятно, что состав этих кислот будет отражаться общей формулой С n Н 2n O2, или С n Н 2n +1 CООН, или RСООН.

Физические свойства предельных одноосновных карбоновых кислот

Низшие кислоты, т. е. кислоты с относительно небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидкости с характерным резким запахом (вспомните запах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жидкости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры кипения предельных одноосновных карбоно-вых кислот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относительной молекулярной массы. Так, например, температура кипения муравьиной кислоты равна 101 °С, уксусной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молекулярную массу (46), при обычных условиях является жидкостью с температурой кипения 100,8 °С. В то же время бутан (МR(С4Н10) = 58) в тех же условиях газообразен и имеет температуру кипения -0,5 °С. Это несоответствие температур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот, в которых две молекулы кислоты связаны двумя водородными связями. Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоновых кислот содержат полярную группу атомов - карбоксил (подумайте, чем вызвана полярность этой функциональной группы) и практически неполярный углеводородный радикал. Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи.

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличением числа атомов в углеводородном радикале растворимость карбоновых кислот снижается.

Зная состав и строение молекул карбоновых кислот, нам будет нетрудно понять и объяснить химические свойства этих веществ.

Химические свойства

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильно полярную связь между атомами водорода и кислорода . Эти свойства вам хорошо известны. Рассмотрим их еще раз на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водорода и анионов кислотного остатка. Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды.

Равновесие диссоциации карбоновых кислот смещено влево, подавляющее большинство их - слабые электролиты. Тем не менее кислый вкус, например, муравьиной и уксусной кислот объясняется диссоциацией на катионы водорода и анионы кислотных остатков.

Очевидно, что присутствием в молекулах карбоновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие характерные свойства.

2. Взаимодействие с металлами, стоящими в электрохимическом ряду напряжений до водорода. Так, железо восстанавливает водород из уксусной кислоты:

2СН3-СООН + Fe -> (CHgCOO)2Fe + Н2

3. Взаимодействие с основными оксидами с образованием соли и воды:

2R-СООН + СаО -> (R-СОО)2Са + Н20

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

R-СООН + NaOH -> R-COONa + Н20 3R-СООН + Са(ОН)2 -> (R-СОО)2Са + 2Н20

5. Взаимодействие с солями более слабых кислот, с образованием последних. Так, уксусная кислота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия.

6. Взаимодействие карбоновых кислот со спиртами с образованием сложных эфиров - уже известная вам реакция эте-рификации (одна из наиболее важных реакций, характерных для карбоновых кислот). Взаимодействие карбоновых кислот со спиртами катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотни-мающих средств и удалении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимодействие сложного эфира с водой), образуются кислота и спирт. Очевидно, что реагировать с карбоновыми кислотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например глицерин:

Dсе карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в молекулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остатка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты; например, реакция присоединения водорода - гидрирование. При гидрировании олеиновой кислоты образуется предельная стеариновая кислота.

Непредельные карбоновые кислоты, как и другие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акриловая кислота обесцвечивает бромную воду.

8. Реакции замещения (с галогенами) - в нее способны вступать предельные карбоновые кислоты; например, при взаимодействии уксусной кислоты с хлором могут быть получены различные хлорпроизводные кислоты:


При галогенировании карбоновых кислот, содержащих более одного атома углерода в углеводородном остатке, возможно образование продуктов с различным положением галогена в молекуле. При протекании реакции по свободнорадикальному механизму могут замещаться любые атомы водорода в углеводородном остатке. Если же реакцию проводить в присутствии небольших количеств красного фосфора , то она идет селективно - водород замещается лишь в а -положении (у ближайшего к функциональной группе атома углерода) в молекуле кислоты. Причины такой селективности вы узнаете при изучении химии в высшем учебном заведении.

Карбоновые кислоты образуют различные функциональные производные при замещении гидроксильной группы. При гидролизе этих производных из них вновь образуется карбоновая кислота.

Хлорангидрид карбоновой кислоты можно получить действием на кислоту хлорида фосфора(ІІІ) или тионилхлорида (SОСl 2). Ангидриды карбоновых кислот получают взаимодействием хлор-ангидридов с солями карбоновых кислот. Сложные эфиры образуются в результате этерификации карбоновых кислот спиртами. Этерификация катализируется неорганическими кислотами.

Эту реакцию инициирует протонирование карбоксильной группы - взаимодействие катиона водорода (протона) с неподеленной электронной парой атома кислорода. Протонирование карбоксильной группы влечет за собой увеличение положительного заряда на атоме углерода в ней:


Способы получения

Карбоновые кислоты могут быть получены окислением первичных спиртов и альдегидов.

Ароматические карбоновые кислоты образуются при окислении гомологов бензола .

Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Как уже говорилось выше, реакции этерификации и гидролиза, катарилизируемые кислотой, обратимы. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль. При гидролизе нитрилов сначала образуются амиды, которые затем превращаются в кислоты. Карбоновые кислоты образуются при взаимодействии магний-органических соединений с оксидом углерода(IV).

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота НСООН - жидкость с резким запахом и температурой кипения 100,8 °С, хорошо растворима в воде. Муравьиная кислота ядовита, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая муравьями, содержит эту кислоту. Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленности, медицине. Она также используется при крашении тканей и бумаги.

Уксусная (этановая) кислота СН3СООН - бесцветная жидкость с характерным резким запахом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5%-ный раствор) и уксусной эссенции (70-80%-ный раствор) и широко используются в пищевой промышленности. Уксусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокрасочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают вещества, используемые для борьбы с сорняками, - гербициды.

Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ей. Она продукт окисления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших предельных одноосновных кислот являются пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты. В отличие от низших кислот эти вещества твердые, плохо растворимые в воде.

Однако их соли - стеараты и пальмитаты - хорошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота С17Н33СООН, или (СН2)7СООН. Это маслоподоб-ная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота НООС-СООН, соли которой встречаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяется в воде. Она применяется при полировке металлов, в деревообрабатывающей и кожевенной промышленности.

1. Непредельная элаидиновая кислота С17Н33СООН является транс-изомером олеиновой кислоты. Составьте структурную формулу этого вещества.

2. Составьте уравнение реакции гидрирования олеиновой кислоты. Назовите продукт этой реакции.

3. Составьте уравнение реакции горения стеариновой кислоты. Какой объем кислорода и воздуха (н. у.) потребуется для сжигания 568 г стеариновой кислоты?

4. Смесь твердых жирных кислот - пальмитиновой и стеариновой - называют стеарином (именно из него изготавливают стеариновые свечи). Какой объем воздуха (н. у.) потребуется для сжигания двухсотграммовой стеариновой свечи, если стеарин содержит равные массы пальмитиновой и стеариновой кислот? Какой объем углекислого газа (н. у.) и масса воды образуются при этом?

5. Решите предыдущую задачу при условии, что свеча содержит равные количества (одинаковое число молей) стеариновой и пальмитиновой кислот.

6. Для удаления пятен ржавчины их обрабатывают раствором уксусной кислоты. Составьте молекулярные и ионные уравнения происходящих при этом реакций, учитывая, что ржавчина содержит оксид и гидроксид железа(III) - Fе2O3 и Fе(ОН)3. Почему такие пятна не удаляются водой? Почему они исчезают при обработке раствором кислоты?

7. Добавляемую в бездрожжевое тесто пищевую (питьевую) соду МаНС03 предварительно «гасят» уксусной кислотой. Проделайте дома эту реакцию и составьте ее уравнение, зная, что угольная кислота слабее уксусной. Объясните образование пены.

8. Зная, что хлор более электроотрицателен, чем углерод , расположите следующие кислоты: уксусную, пропионо-вую, хлоруксусную, дихлоруксусную и трихлоруксусную кислоты в порядке усиления кислотных свойств. Обоснуйте свой результат.

9. Чем можно объяснить, что муравьиная кислота вступает в реакцию «серебряного зеркала»? Составьте уравнение этой реакции. Какой газ может выделяться при этом?

10. При взаимодействии 3 г предельной одноосновной карбо-новой кислоты с избытком магния выделилось 560 мл (н. у.) водорода. Определите формулу кислоты.

11. Приведите уравнения реакции, с помощью которых можно описать химические свойства уксусной кислоты. Назовите продукты этих реакций.

12. Предложите несложный лабораторный способ, с помощью которого можно распознать пропановую и акриловую кислоты.

13. Составьте уравнение реакции получения метилформиата - сложного эфира метанола и муравьиной кислоты. В каких условиях следует проводить эту реакцию?

14. Составьте структурные формулы веществ, имеющих состав С3Н602. К каким классам веществ их можно отнести? Приведите уравнения реакций, характерных для каждого из них.

15. Вещество А - изомер уксусной кислоты - не растворяется в воде, однако может подвергаться гидролизу. Какова структурная формула вещества А? Назовите продукты его гидролиза.

16. Составьте структурные формулы следующих веществ:

а) метилацетат;
б) щавелевая кислота;
в) муравьиная кислота;
г) дихлоруксусная кислота;
д) ацетат магния;
е) этилацетат;
ж) этилформиат;
з) акриловая кислота.

17*. Образец предельной одноосновной органической кислоты массой 3,7 г нейтрализовали водным раствором гидрокарбоната натрия. При пропускании выделившегося газа через известковую воду было получено 5,0 г осадка. Какая кислота была взята и каков объем выделившегося газа?

Карбоновые кислоты в природе

Карбоновые кислоты очень часто встречается в природе. Они содержится в фруктах и растениях. Они присутствуют в хвое, поте, моче и соке крапивы. Вы знаете, оказывается, что основная масса кислот образуют сложные эфиры, которые обладают запахами. Так запах молочной кислоты, которая содержится в поте человека, привлекает комаров, они ее чувствуют на довольно-таки значительном расстоянии. Поэтому, сколько бы вы не пытались отогнать назойливого комара, он все равно хорошо чувствует свою жертву. Кроме человеческого пота, молочная кислота содержится в соленых огурцах и квашеной капусте.

А самки обезьян, чтобы привлечь к себе самца, выделяет уксусную и пропионовую кислоту. Чувствительный, собачий нос способен услышать запах масляной кислоты, которая имеет концентрацию 10–18 г/см3.

Многие виды растений способны выделять выделяют уксусную и масляную кислоту. А некоторые сорные растения этим пользуются и выделяя вещества, устраняют своих конкурентов, подавляя их рост, а иногда и вызывая их гибель.

Кислотой пользовались и индейцы. Чтобы уничтожить врага, они смачивали стрелы смертельным ядом, который оказался производным от уксусной кислоты.

И тут возникает закономерный вопрос, представляют ли кислоты опасность для здоровья человека? Ведь широко распространенная в природе щавелевая кислота, которая содержится в щавеле, апельсинах, смородине и малине, почему-то не нашла применения в пищевой промышленности. Оказывается, щавелевая кислота в двести раз сильнее уксусной кислоты, и способна даже разъедать посуду, а ее соли, накапливаясь в организме человека, образовывать камни.

Кислоты нашли широкое применение во всех сферах человеческой жизни. Их применяют в медицине, косметологии, пищевой промышленности, сельском хозяйстве и используют для бытовых нужд.

В медицинских целях используются такие органические кислоты, как молочная, винная, аскорбиновая. Наверное, каждый из вас употреблял для укрепления организма витамин С – это как раз и есть аскорбиновая кислота. Она не только помогает укрепить иммунитет, но и обладает способностью выводить из организма канцерогены и токсины. Молочную кислоту используют для прижигания, так как она обладает высокой гигроскопичностью. А вот винная кислота действует, как легкое слабительное, как противоядие при отравлениях щелочами и как компонент, необходимый для приготовления плазмы при переливании крови.

А вот поклонникам косметических процедур, следует знать, что содержащиеся в цитрусовых фруктах, фруктовые кислоты, благоприятно влияют на кожу, так, как проникая вглубь, они способны ускорять процесс обновления кожи. Кроме этого, запах цитрусовых имеет тонизирующее влияние на нервную систему.

Замечали ли вы, что такие ягоды, как клюква и брусника долго хранятся и остаются свежими. А знаете почему? Оказывается, в них содержится бензойная кислота, которая является прекрасным консервантом.

А вот в сельском хозяйстве широкое применение нашла янтарная кислота, так как с ее помощью можно повысить урожайность культурных растений. Также она способна стимулировать рост растений и ускорять их развитие.

Практически у всех дома есть уксус. И большинство людей знают, что его основу составляет Но что она представляет собой с химической точки зрения? Какие еще этого ряда существуют и каковы их характеристики? Попробуем разобраться в этом вопросе и изучить предельные одноосновные карбоновые кислоты. Тем более что в быту применяется не только уксусная, но и некоторые другие, а уж производные этих кислот вообще частые гости в каждом доме.

Класс карбоновых кислот: общая характеристика

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов - карбоксильную функциональную группу. Она имеет вид -СООН. Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R - это частица-радикал, которая может включать любое количество атомов углерода.

Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты - это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН - карбоксильные группы.

То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород - самый электроотрицательный в группе. От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия. Поэтому кислоты в соответствующих индикаторах дают подобную реакцию:


Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях.

Классификация

Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них - это природа радикала. По этому фактору выделяют:

  • Алициклические кислоты. Пример: хинная.
  • Ароматические. Пример: бензойная.
  • Алифатические. Пример: уксусная, акриловая, щавелевая и прочие.
  • Гетероциклические. Пример: никотиновая.

Если говорить о связях в молекуле, то также можно выделить две группы кислот:


Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории.

  1. Одноосновные - только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие.
  2. Двухосновные - соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие.
  3. Многоосновные - лимонная, молочная и прочие.

История открытия

Виноделие процветало с самой древности. А, как известно, один из его продуктов - уксусная кислота. Поэтому история известности данного класса соединений берет свои корни еще со времен Роберта Бойля и Иоганна Глаубера. Однако при этом химическую природу этих молекул выяснить долгое время не удавалось.

Ведь долгое время господствовали взгляды виталистов, которые отрицали возможность образования органики без живых существ. Но уже в 1670 году Д. Рэй сумел получить самого первого представителя - метановую или муравьиную кислоту. Сделал он это, нагревая в колбе живых муравьев.

Позже работы ученых Берцелиуса и Кольбе показали возможность синтеза этих соединений из неорганических веществ (перегонкой древесного угля). В результате была получена уксусная. Таким образом были изучены карбоновые кислоты (физические свойства, строение) и положено начало для открытия всех остальных представителей ряда алифатических соединений.

Физические свойства

Сегодня подробно изучены все их представители. Для каждого из них можно найти характеристику по всем параметрам, включая применение в промышленности и нахождение в природе. Мы рассмотрим, что собой представляют карбоновые кислоты, их и другие параметры.

Итак, можно выделить несколько основных характерных параметров.

  1. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости. Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные.
  2. Плотность первых двух представителей превышает единицу. Все остальные легче воды.
  3. Температура кипения: чем больше цепь, тем выше показатель. Чем более разветвленная структура, тем ниже.
  4. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже.
  5. В воде растворяются очень хорошо.
  6. Способны образовывать прочные водородные связи.

Такие особенности объясняются симметрией строения, а значит, и строением кристаллической решетки, ее прочностью. Чем более простые и структурированные молекулы, тем выше показатели, которые дают карбоновые кислоты. Физические свойства данных соединений позволяют определять области и способы использования их в промышленности.

Химические свойства

Как мы уже обозначали выше, данные кислоты могут проявлять свойства разные. Реакции с их участием важны для промышленного синтеза многих соединений. Обозначим самые главные химические свойства, которые может проявлять одноосновная карбоновая кислота.

  1. Диссоциация: R-COOH = RCOO - + H + .
  2. Проявляет то есть взаимодействует с основными оксидами, а также их гидроксидами. С простыми металлами взаимодействует по стандартной схеме (то есть только с теми, что стоят до водорода в ряду напряжений).
  3. С более сильными кислотами (неорганические) ведет себя как основание.
  4. Способна восстанавливаться до первичного спирта.
  5. Особая реакция - этерификации. Это взаимодействие со спиртами с образованием сложного продукта - эфира.
  6. Реакция декарбоксилирования, то есть отщепления от соединения молекулы углекислого газа.
  7. Способна взаимодействовать с галогенидами таких элементов, как фосфор и сера.

Очевидно, насколько многогранны карбоновые кислоты. Физические свойства, как и химические, достаточно разнообразны. Кроме того, следует сказать, что в целом по силе как кислоты все органические молекулы достаточно слабы по сравнению со своими неорганическими коллегами. Их константы диссоциации не превышают показателя 4,8.

Способы получения

Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты.

1. В лаборатории это делают окислением:

  • спиртов;
  • альдегидов;
  • алкинов;
  • алкилбензолов;
  • деструкцией алкенов.

2. Гидролиз:

  • сложных эфиров;
  • нитрилов;
  • амидов;
  • тригалогеналканов.

4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов.

5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты.

Основные соединения предельных карбоновых кислот: соли

Соли карбоновых кислот - важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с:

  • металлами;
  • основными оксидами;
  • щелочами;
  • амфотерными гидроксидами.

Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами - пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия - мыла, жидкие и твердые.

Мыла

Так, если речь идет о подобной реакции: 2C 17 H 35 -COOH + 2Na = 2C 17 H 35 COONa + H 2 ,

то образующийся продукт - стеарат натрия - это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья.

Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия - жидкое мыло для мытья рук. Поэтому можно с уверенностью заявлять, что соли карбоновых кислот - это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах. Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы.

Эфиры карбоновых кислот

Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий - реакции этерификации. Общий вид можно представить уравнением:

R , -COOH + R"-OH = R , -COOR" + H 2 O.

Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения. Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды. Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира.

Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как:

  • пищевые добавки;
  • ароматические добавки;
  • составной компонент парфюма;
  • растворители;
  • компоненты лаков, красок, пластмасс;
  • медикаментов и прочее.

Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности.

Этановая кислота (уксусная)

Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее - СН 3 СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки.

  1. Она является пищевой добавкой под кодом Е-260.
  2. Используется в пищевой промышленности для консервации.
  3. Применяется в медицине для синтеза лекарственных средств.
  4. Компонент при получении душистых соединений.
  5. Растворитель.
  6. Участник процесса книгопечатания, крашения тканей.
  7. Необходимый компонент в реакциях химических синтезов множества веществ.

В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной.

Муравьиная кислота

Самый первый и простой представитель данного класса. Формула - НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники:

  • муравьи и пчелы;
  • крапива;
  • хвоя;
  • фрукты.

Основные области использования:

Также в хирургии растворы данной кислоты используют как антисептические средства.

ОПРЕДЕЛЕНИЕ

Органические вещества, молекулы которых содержат одну или несколько карбоксильных групп, соединенных с углеводородным радикалом, называют карбоновыми кислотами .

Первые три члена гомологического ряда карбоновых кислот, включая пропионовую кислоту, — жидкости, имеющие резкий запах, хорошо растворимые в воде. Следующие гомологи, начиная с масляной кислоты, — также жидкости, обладающие резким неприятным запахом, но плохо растворимые в воде. Высшие кислоты, с числом атомов углерода 10 и более, представляют собой твердые вещества, без запаха, нерастворимые в воде. В целом, в ряду гомологов с увеличением молекулярной массы уменьшается растворимость в воде, уменьшается плотность и возрастает температура кипения (табл. 1).

Таблица 1. Гомологический ряд карбоновых кислот.

Получение карбоновых кислот

Карбоновые кислоты получают окислением предельных углеводородов, спиртов, альдегидов. Например, уксусную кислоту - окислением этанола раствором перманганата калия в кислой среде при нагревании:

Химические свойства карбоновых кислот

Химические свойства карбоновых кислот обусловлены в первую очередь особенностями их строения. Так, растворимые в воде кислоты способны диссоциировать на ионы:

R-COOH↔R-COO — + H + .

Благодаря наличию в воде иона H + они имеют кислый вкус, способны менять окраску индикаторов и проводить электрический ток. В водном растворе эти кислоты - слабые электролиты.

Карбоновые кислоты обладают химическими свойствами, характерными для растворов неорганических кислот, т.е. взаимодействуют с металлами (1), их оксидами (2), гидроксидами (3) и слабыми солями (4):

2CH 3 -COOh + Zn → (CH 3 COO) 2 Zn + H 2 (1);

2CH 3 -COOH + CuO→ (CH 3 COO) 2 Cu + H 2 O (2);

R-COOH + KOH → R-COOK + H 2 O (3);

2CH 3 -COOH + NaHCO 3 → CH 3 COONa + H 2 O + CO 2 (4).

Специфическое свойство предельных, а также непредельных карбоновых кислот, проявляемое за счет функциональной группы, — взаимодействие со спиртами.

Карбоновые кислоты взаимодействуют со спиртами при нагревании и в присутствии концентрированной серной кислоты. Например, если к уксусной кислоте прилить этиловый спирт и немного серной кислоты, то при нагревании появляется запах этилового эфира уксусной кислоты (этилацетата):

CH 3 -COOH + C 2 H 5 OH ↔CH 3 -C(O)-O-C 2 H 5 + H 2 O.

Специфическое свойство предельных карбоновых кислот, проявляемое за счет радикала, — реакция галогенирования (хлорирования).


Применение карбоновых кислот

Карбоновые кислоты служат исходным сырьем для получения кетонов, галогенангидридов, виниловых эфиров и других важных классов органических соединений.

Муравьиная кислота широко применяется для получения сложных эфиров, используемых в парфюмерии, в кожевенном деле (дубление кож), текстильной промышленности (как протрава при крашении), в качестве растворителя и консерванта.

Водный раствор (70-80%-ной) уксусной кислоты называется уксусной эссенцией, а 3-9%-ный водный раствор - столовым уксусом. Эссенция нередко используется для получения уксуса в домашних условиях путем разведения.

Примеры решения задач

ПРИМЕР 1

Задание С помощью каких химических реакций можно осуществить следующие превращения:

а) CH 4 → CH 3 Cl → CH 3 OH → HCHO → HCOOH → HCOOK.

Напишите уравнения реакций, укажите условия их протекания.

Ответ а) Хлорирование метана на свету приводит к получению хлорметана:

CH 4 + Cl 2 →CH 3 Cl + HCl.

Галогенпроизводные алканов подвергаются гидролизу в водной или щелочной среде с образованием спиртов:

CH 3 Cl + NaOH→CH 3 OH + NaCl.

В результате окисления первичных спиртов, например, дихроматом калия в кислой среде в присутствии катализатора (Cu, CuO, Pt, Ag) образуются альдегиды:

CH 3 OH+ [O] →HCHO.

Альдегиды легко окисляются до соответствующих карбоновых кислот, например, перманганатом калия:

HCHO + [O] →HCOOH.

Карбоновые кислоты, проявляют все свойства, присущие слабым минеральным кислотам, т.е. способны взаимодействовать с активными металлами с образованием солей:

2HCOOH+ 2K→2HCOOK + H 2 .

ПРИМЕР 2

Задание Напишите уравнения реакций между следующими веществами: а) 2-метилпропановой кислотой и хлором; б) уксусной кислотой и пропанолом-2; в) акриловой кислотой и бромной водой; г) 2-метилбутановой кислотой и хлоридом фосфора (V). Укажите условия протекания реакций.
Ответ а) в результате реакции взаимодействия между 2-метилпропановой кислотой и хлором происходит замещение атома водорода в углеводородном радикале, находящемся в a-положение; образуется 2-метил-2-хлорпропановая кислота

H 3 C-C(CH 3)H-COOH + Cl 2 → H 3 C-C(CH 3)Cl-COOH + HCl (kat = P).

б) в результате реакции взаимодействия между уксусной кислотой и пропанолом-2 происходит образование сложного эфира - изопропиловый эфир уксусной кислоты.

CH 3 -COOH + CH 3 -C(OH)H-CH 3 → CH 3 -C(O)-O-C(CH 3)-CH 3 .

в) в результате реакции взаимодействия между акриловой кислотой и бромной водой присоединение галогена по месту двойной связи в соответствии с правилом Марковникова; образуется 2,3-дибромпропановая кислота

CH 2 =CH-COOH + Br 2 → CH 2 Br-CHBr-COOH

г) в результате реакции взаимодействия между 2-метилбутановой кислотой и хлоридом фосфора (V) образуется соответствующий хлорангидрид

CH 3 -CH 2 -C(CH 3)H-COOH + PCl 5 →CH 3 -CH 2 -C(CH 3)H-COOCl + POCl 3 + HCl.