Критерием согласия является. Критерии согласия. Теоретические и эмпирические частоты. Проверка на нормальность распределения

Для оценки тесноты связи применяются показатели вариации:

1. Общая дисперсия результативного признака - отражает совокупное влияние факторов:

2. Факторная дисперсия результативного признака - отражает вариацию только от воздействия изучаемого фактора х:

Характеризует колеблемость выравненных значений у х от общей средней величины .

3. Остаточная дисперсия отображает вариацию результативного признака у от всœех прочих, кроме х факторов:

Соотношение между факторной и общей отражает меру тесноты связи между х и у.

индекс детерминации – доля факторной дисперсии в общей дисперсии. В случае если это выражение представить как , то R это будет индекс корреляции .

На базе правила сложения дисперсий (=+индекс корреляции можно представить как: или . Индекс корреляции применяется для оценки тесноты связи при всœех формах связи.

Для измерения тесноты линœейной связи применяется линœейный коэффициент корреляции:

Качественная оценка тесноты связи показателœей дается с помощью шкалы Чеддока:

Рассмотрим на условном примере применение регрессионно-корреляционного анализа связи парной корреляции. Имеется выборочная информация о работе 8 гостиниц, у которых различная среднегодовая наполняемость гостиничных номеров и различная рентабельность их деятельности. В результате регрессионно-корреляционного анализа крайне важно определить, существует ли прямая зависимость между наполняемостью гостиничных номеров и если она есть, то насколько она тесная:

N пп Наполняе-мость (в %%) х Рентабель- ность (в %%) у х 2 у 2 ху Выравненное (теоретическое) у х
8,2 7,0 9,3 8,1 9,5 10,5 7,5 6,3 67,24 49,00 86,49 65,61 90,25 110,25 56,25 39,69 492,0 364,0 669,6 526,5 712,5 840,0 420,0 315,0 7,61 6,65 9,05 8,21 9,41 10,01 7,13 6,41
66,4 564,78 4339,6 64,48

Определим параметры уравнения линœейной парной регрессии:

Наше уравнение парной регрессии будет иметь вид:. Подставим в это уравнение эмпирические значения х и рассчитаем теоретические значения 7,61 и т. д.

Теперь определим тесноту связи между наполняемостью гостиниц и рентабельностью их деятельности:

В результате проведенного анализа установлено, что между наполняемостью гостиниц и рентабельностью их деятельности существует прямая весьма высокая зависимость.

На практике часто возникает крайне важно сть произвести оценку близости эмпирических частот к теоретическим. Такую оценку можно произвести с помощью критериев близости, называемых критериями согласия. Наиболее часто применяется для этих целœей – критерий согласия Пирсона (ʼʼхиʼʼ- квадрат), который рассчитывается по формуле:

где f – эмпирические частоты,

Теоретические частоты.

Оценка близости эмпирических частот к теоретическим определяется по вероятности достижения данной величины Р() при случайных отклонениях частот. В случае если вероятность Р() значительно отличается от нуля (больше, чем 0,05), то отклонения эмпирических частот от теоретических можно считать случайными. В случае если Р()< 0,05, то отклонения нельзя считать случайными, а эмпирическое и теоретические распределœения принципиально друг от друга отличаются.

Величина зависит не только от отклонений фактических частот от теоретических, но и от количества групп, на которые разбита совокупность, в связи с этим таблицы критических значений рассчитаны для различных степеней свободы варьирования эмпирических частот (приложение). Стоит сказать, что для нормального распределœения число степеней свободы К=n-3 , где n – число групп.Р(, что значительно превышает 0,05. Это означает, что отклонения фактических частот от эмпирических можно считать случайными, а само распределœение реализации путевок близко к нормальному распределœению.

Приложение 1

Критерии согласия - понятие и виды. Классификация и особенности категории "Критерии согласия" 2017, 2018.

Так как все предположения о характере того или иного распределения – это гипотезы, то они должны быть подвергнуты статистической проверке с помощью критериев согласия , которые дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными, т.е. случайными, а когда – существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду.

Существует ряд критериев согласия. Чаще применяют критерии Пирсона, Романовского и Колмогорова.

Критерий согласия Пирсона – один из основных:

где k – число групп, на которые разбито эмпирическое распределение,
– наблюдаемая частота признака в i-й группе,
– теоретическая частота.
Для распределения составлены таблицы, где указано критическое значение критерия согласия для выбранного уровня значимости и степеней свободы df.(или )
Уровень значимости – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистике пользуются тремя уровнями:

  • a= 0,10, тогда Р=0,90 (в 10 случаях их 100 может быть отвергнута правильная гипотеза);
  • a= 0,05, тогда Р=0,95;
  • a= 0,01, тогда Р=0,99.

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты.
Например, при выравнивании по кривой нормального распределения имеется три связи:
; ; .
Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df = k –3.
Для оценки существенности расчетное значение сравнивается с табличным .
При полном совпадении теоретического и эмпирического распределений , в противном случае >0. Если >, то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем.
В случае, если , заключаем, что эмпирический ряд хорошо согласуется с гипотезой о предполагаемом распределении и с вероятностью Р=(1-a) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно.
Критерий согласия Пирсона используется, если объем совокупности достаточно велик , при этом частота каждой группы должна быть не менее 5.

Критерий Романовского с основан на использовании критерия Пирсона, т.е. уже найденных значений , и числа степеней свободы df:

Он удобен при отсутствии таблиц для .
Если с<3, то расхождения распределений случайны, если же с>3, то не случайны и теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Критерий Колмогорова l основан на определении максимального расхождения между накопленными частотами и частостями эмпирических и теоретических распределений:
или ,
где D и d – соответственно максимальная разность между накопленными частотами и накопленными частостями эмпирического и теоретического рядов распределений;
N – число единиц совокупности.
Рассчитав значение l, по таблице Р(l) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность Р(l) может изменяться от 0 до 1. При Р(l)=1 происходит полное совпадение частот, Р(l)=0 – полное расхождение. Если l принимает значения до 0,3, то Р(l)=1.
Основное условие использования критерия Колмогорова – достаточно большое число наблюдений.

При анализе вариационных рядов распределения большое значение имеет, насколько эмпирическое распределение признака соответствует нормальному . Для этого частоты фактического распределения нужно сравнить с теоретическими, которые характерны для нормального распределения. Значит, нужно по фактическим данным вычислить теоретические частоты кривой нормального распределения , являющиеся функцией нормированных отклонений.

Иначе говоря, эмпирическую кривую распределения нужно выровнять кривой нормального распределения.

Объективная характеристика соответствия теоретических и эмпирических частот может быть получена при помощи специальных статистических показателей, которые называют критериями согласия .

Критерием согласия называют критерий, который позволяет установить, является ли расхождение эмпирического и теоретического распределений случайным или значимым, т. е. согласуются ли данные наблюдений с выдвинутой статистической гипотезой или не согласуются. Распределение генеральной совокупности, которое она имеет в силу выдвинутой гипотезы, называют теоретическим.

Возникает необходимость установить критерий (правило), которое позволяло бы судить, является ли расхождение между эмпирическим и теоретическим распределениями случайным или значимым. Если расхождение окажется случайным , то считают, что данные наблюдений (выборки) согласуются с выдвинутой гипотезой о законе распределения генеральной совокупности и, следовательно, гипотезу принимают; если же расхождение окажется значимым , то данные наблюдений не согласуются с гипотезой и ее отвергают.

Обычно эмпирические и теоретические частоты различаются в силу того, что:

  • расхождение случайно и связано с ограниченным количеством наблюдений;
  • расхождение неслучайно и объясняется тем, что статистическая гипотеза о том, что генеральная совокупность распределена нормально - ошибочна.

Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы о характере распределения в эмпирическом ряду.

Эмпирические частоты получают в результате наблюдения. Теоретические частоты рассчитывают по формулам.

Для закона нормального распределения их можно найти следующим образом:

  • Σƒ i - сумма накопленных (кумулятивных) эмпирических частот
  • h - разность между двумя соседними вариантами
  • σ - выборочное среднеквадратическое отклонение
  • t–нормированное (стандартизированное) отклонение
  • φ(t)–функция плотности вероятности нормального распределения (находят по для соответствующего значения t)

Имеется несколько критериев согласия, наиболее распространенными из которых являются: критерий хи-квадрат (Пирсона), критерий Колмогорова, критерий Романовского.

Критерий согласия Пирсона χ 2 – один из основных, который можно представить как сумму отношений квадратов расхождений между теоретическими (f Т ) и эмпирическими (f) частотами к теоретическим частотам:

  • k–число групп, на которые разбито эмпирическое распределение,
  • f i –наблюдаемая частота признака в i-й группе,
  • f T –теоретическая частота.

Для распределения χ 2 составлены таблицы, где указано критическое значение критерия согласия χ 2 для выбранного уровня значимости α и степеней свободы df (или ν).
Уровень значимости α – вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. Р - статистическая достоверность принятия верной гипотезы. В статистике чаще всего пользуются тремя уровнями значимости:

α=0,10, тогда Р=0,90 (в 10 случаях из 100)

α=0,05, тогда Р=0,95 (в 5 случаях из 100)

α=0,01, тогда Р=0,99 (в 1 случае из 100) может быть отвергнута правильная гипотеза

Число степеней свободы df определяется как число групп в ряду распределения минус число связей: df = k –z. Под числом связей понимается число показателей эмпирического ряда, использованных при вычислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретические частоты. Например, при выравнивании по кривой нормального распределения имеется три связи. Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как df =k–3. Для оценки существенности, расчетное значение сравнивается с табличным χ 2 табл

При полном совпадении теоретического и эмпирического распределений χ 2 =0, в противном случае χ 2 >0. Если χ 2 расч > χ 2 табл , то при заданном уровне значимости и числе степеней свободы гипотезу о несущественности (случайности) расхождений отклоняем. В случае, если χ 2 расч < χ 2 табл то гипотезу принимаем и с вероятностью Р=(1-α) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно. Следовательно, есть основания утверждать, что эмпирическое распределение подчиняется нормальному распределению . Критерий согласия Пирсона используется, если объем совокупности достаточно велик (N>50), при этом, частота каждой группы должна быть не менее 5.

Основан на определении максимального расхождения между накопленными эмпирическими и теоретическими частотами:

где D и d – соответственно, максимальная разность между накопленными частотами и накопленными частостями эмпирического и теоретического распределений.
По таблице распределения статистики Колмогорова определяют вероятность, которая может изменяться от 0 до 1. При Р(λ)=1- происходит полное совпадение частот, Р(λ)=0 – полное расхождение. Если величина вероятности Р значительна по отношению к найденной величине λ, то можно предположить, что расхождения между теоретическим и эмпирическим распределениями несущественны, т. е. носят случайный характер.
Основное условие использования критерия Колмогорова – достаточно большое число наблюдений.

Критерий согласия Колмогорова

Рассмотрим как критерий Колмогорова (λ) применяется при проверке гипотезы о нормальном распределении генеральной совокупности. Выравнивание фактического распределения по кривой нормального распределения состоит из нескольких этапов:

  1. Сравнивают фактические и теоретические частоты.
  2. По фактическим данным определяют теоретические частоты кривой нормального распределения, которая является функцией нормированного отклонения.
  3. Проверяют на сколько распределение признака соответствует нормальному.

Для IV колонки таблицы:

В MS Excel нормированное отклонение (t) рассчитывается с помощью функции НОРМАЛИЗАЦИЯ. Необходимо выделить диапазон свободных ячеек по количеству вариант (строк электронной таблицы). Не снимая выделения, вызвать функцию НОРМАЛИЗАЦИЯ. В появившемся диалоговом окне указать следующие ячейки, в которых размещены, соответственно, наблюдаемые значения (X i), средняя (X) и среднеквадратическое отклонение Ϭ. Операцию обязательно завершить одновременным нажатием клавиш Ctrl+Shift+Enter

Для V колонки таблицы:

Функцию плотности вероятности нормального распределения φ(t) находим по таблице значений локальной функции Лапласа для соответствующего значения нормированного отклонения (t)

Для VI колонки таблицы:

Введение

Актуальность данной темы в том, что в течение изучения основ биостатистики мы предполагали, что закон распределения генеральной совокупности известен. Но что, если закон распределения неизвестен, но есть основания предполагать, что он имеет определенный вид (назовем его А), то проверяют нулевую гипотезу: генеральная совокупность распределена по закону А. Проверка этой гипотезы производится при помощи специально подобранной случайной величины - критерия согласия.

Критерии согласия - это критерии проверки гипотез о соответствии эмпирического распределения теоретическому распределению вероятностей. Такие критерии подразделяются на два класса:

  • Ш Общие критерии согласия применимы к самой общей формулировке гипотезы, а именно к гипотезе о согласии наблюдаемых результатов с любым априорно предполагаемым распределением вероятностей.
  • Ш Специальные критерии согласия предполагают специальные нулевые гипотезы, формулирующие согласие с определенной формой распределения вероятностей.

Критерий согласия

Наиболее распространенные критерии согласия - омега-квадрат, хи-квадрат, Колмогорова и Колмогорова-Смирнова.

Непараметрические критерии согласия Колмогорова, Смирнова, омега квадрат широко используются. Однако с ними связаны и широко распространенные ошибки в применении статистических методов.

Дело в том, что перечисленные критерии были разработаны для проверки согласия с полностью известным теоретическим распределением. Расчетные формулы, таблицы распределений и критических значений широко распространены. Основная идея критериев Колмогорова, омега квадрат и аналогичных им состоит в измерении расстояния между функцией эмпирического распределения и функцией теоретического распределения. Различаются эти критерии видом расстояний в пространстве функций распределения.

Критерии согласия ч2 Пирсона для простой гипотезы

Теорема К. Пирсона относится к независимым испытаниям с конечным числом исходов, т.е. к испытаниям Бернулли (в несколько расширенном смысле). Она позволяет судить о том, согласуются ли наблюдения в большом числе испытаний частоты этих исходов с их предполагаемыми вероятностями.

Во многих практических задачах точный закон распределения неизвестен. Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому. Данная гипотеза требует статистической проверки по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X - исследуемая случайная величина. Требуется проверить гипотезу H0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия. Одним из популярных является критерий согласия хи-квадрат К. Пирсона. В нем вычисляется статистика хи-квадрат:

где N - число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i - номер интервала, pt i -вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, pe i - вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H0 отвергается. В противном случае она принимается на заданном уровне значимости. Здесь k - число наблюдений, p число оцениваемых параметров закона распределения.

Рассмотрим статистику:

Статистика ч2 называется статистикой хи-квадрат Пирсона для простой гипотезы.

Ясно, что ч2 представляем собой квадрат некоего расстояния между двумя r-мерными векторами: вектором относительных частот (mi /n, …, mr /n) и вектором вероятностей (pi , …, pr). От евклидового расстояния это расстояние отличается лишь тем, что разные координаты входят в него с разными весами.

Обсудим поведение статистики ч2 в случае, когда гипотеза Н верна, и в случае, когда Н неверна. Если верна Н, то асимптотическое поведение ч2 при n > ? указывает теорема К. Пирсона. Чтобы понять, что происходит с (2.2), когда Н неверна, заметим, что по закону больших чисел mi /n > pi при n > ?, для i = 1, …, r. Поэтому при n > ?:

Эта величина равна 0. Поэтому если Н неверна, то ч2 >? (при n > ?).

Из сказанного следует, что Н должна быть отвергнута, если полученное в опыте значение ч2 слишком велико. Здесь, как всегда, слова «слишком велико» означают, что наблюденное значение ч2 превосходит критическое значение, которое в данном случае можно взять из таблиц распределения хи-квадрат. Иначе говоря, вероятность Р(ч2 npi ч2) - малая величина и, следовательно, маловероятно случайно получить такое же, как в опыте, или еще большее расхождение между вектором частот и вектором вероятностей.

Асимптотический характер теоремы К. Пирсона, лежащий в основе этого правила, требует осторожности при его практическом использовании. На него можно полагаться только при больших n. Судить же о том, достаточно ли n велико, надо с учетом вероятностей pi , …, pr . Поэтому нельзя сказать, к примеру, что ста наблюдений будет достаточно, поскольку не только n должно быть велико, но и произведения npi , …, npr (ожидаемые частоты) тоже не должны быть малы. Поэтому проблема аппроксимации ч2 (непрерывное распределение) к статистике ч2 , распределение которой дискретно, оказалась сложной. Совокупность теоретических и экспериментальных доводов привела к убеждению, что эта аппроксимация применима, если все ожидаемые частоты npi>10. если число r (число различных исходов) возрастает, граница для снижена (до 5 или даже до 3, если r порядка нескольких десятков). Чтобы соблюсти эти требования, на практике порой приходится объединять несколько исходов, т.е. переходить к схеме Бернулли с меньшим r.

Описанный способ для проверки согласия можно прилагать не только к испытаниям Бернулли, но и к произвольным выборкам. Предварительно их наблюдения надо превратить в испытания Бернулли путем группировки. Делают это так: пространство наблюдений разбивают на конечное число непересекающихся областей, а затем для каждой области подсчитывают наблюденную частоту и гипотетическую вероятность.

В данном случае к перечисленным ранее трудностям аппроксимации прибавляется еще одна - выбор разумного разбиения исходного пространства. При этом надо заботится о том, чтобы в целом правило проверки гипотезы об исходном распределении выборки было достаточно чувствительным к возможным альтернативам. Наконец, отмечу, что статистические критерии, основные на редукции к схеме Бернулли, как правило, не являются состоятельными против всех альтернатив. Так что такой метод проверки согласия имеет ограниченную ценность.

Критерий согласия Колмогорова - Смирнова в своем классическом виде является более мощным, чем критерий ч2 и может быть использован для проверки гипотезы о соответствии эмпирического распределения любому теоретическому непрерывному распределению F(x) с заранее известными параметрами. Последнее обстоятельство накладывает ограничения на возможность широкого практического приложения этого критерия при анализе результатов механических испытаний, так как параметры функции распределения характеристик механических свойств, как правило, оценивают по данным самой выборки.

Критерий Колмогорова - Смирнова применяют для негруппированных данных или для группированных в случае малой ширины интервала (например, равной цене деления шкалы силоизмерителя, счетчика циклов нагружения и т. д.). Пусть результатом испытаний серии из n образцов является вариационный ряд характеристики механических свойств

x1 ? x2 ? ... ? xi ? ... ? xn. (3.93)

Требуется проверить нулевую гипотезу о принадлежности выборочного распределения (3.93) теоретическому закону F(x).

Критерий Колмогорова - Смирнова базируется на распределении максимального отклонения накопленной частности от значения функции распределения. При его использовании вычисляют статистики

являющуюся статистикой критерия Колмогорова. Если выполняется неравенство

Dnvn ? лб (3.97)

для больших объемов выборки (n > 35) или

Dn(vn + 0.12 + 0.11/vn) ? лб (3.98)

для n ? 35, то нулевую гипотезу не отвергают.

При невыполнении неравенств (3.97) и (3.98) принимают альтернативную гипотезу о принадлежности выборки (3.93) неизвестному распределению.

Критические значения лб составляют: л0.1 = 1.22; л0.05 = 1.36; л0.01 = 1.63.

Если параметры функции F(x) заранее не известны, а оцениваются по данным выборки, критерий Колмогорова - Смирнова теряет свою универсальность и может быть использован только для проверки соответствия опытных данных лишь некоторым конкретным функциям распределения.

При использовании в качестве нулевой гипотезы принадлежность опытных данных нормальному или логарифмически нормальному распределению вычисляют статистики:

где Ц(zi) - значение функции Лапласа для

Ц(zi) = (xi - xср)/s Критерий Колмогорова - Смирнова для любых объемов выборки n записывают в виде

Критические значения лб в этом случае составляют: л0.1 = 0.82; л0.05 = 0.89; л0.01 = 1.04.

Если проверяют гипотезу о соответствии выборки ***экспоненциальному распределению, параметр которого оценивают по опытным данным, вычисляют аналогичные статистики:

критерий эмпирический вероятность

и составляют критерий Колмогорова - Смирнова.

Критические значения лб для этого случая: л0.1 = 0.99; л0.05 = 1.09; л0.01 = 1.31.

Так как все предположения о характере того или иного распределения - это гипотезы, а не категорические утверждения, то они, естественно, должны быть подвергнуты статистической проверке с помощью так называемых критериев согласия.

Критерии согласия, опираясь на установленный закон распределения, дают возможность установить, когда расхождения между теоретическими и эмпирическими частотами следует признать несущественными (случайными), а когда - существенными (неслучайными). Таким образом, критерии согласия позволяют отвергнуть или подтвердить правильность выдвинутой при выравнивании ряда гипотезы

о характере распределения в эмпирическом ряду и дать ответ, можно ли принять для данного эмпирического распределения модель, выраженную некоторым теоретическим законом распределения.

Существует ряд критериев согласия. Чаще других применяют критерии Пирсона, Романовского и Колмогорова. Рассмотрим их.

Критерий согласия Пирсона %2 (хи-квадрат) - один из основных критериев согласия. Критерий предложен английским математиком Карлом Пирсоном (1857-1936) для оценки случайности (существенности) расхождений между частотами эмпирического и теоретического распределений. Критерий Пирсона где к

число групп, на которые разбито эмпирическое распределение;

наблюдаемая частота признака в і-й группе; теоретическая частота, рассчитанная по предполагаемому распределению. Для распределения у} составлены таблицы, где указано критическое значение критерия согласия %2 для выбранного уровня значимости а и данного числа степеней свободы V (см. Приложение 4).

Уровень значимости а - вероятность ошибочного отклонения выдвинутой гипотезы, т.е. вероятность того, что будет отвергнута правильная гипотеза. В статистических исследованиях в зависимости от важности и ответственности решаемых задач пользуются следующими тремя уровнями значимости: 1)

а = 0,10, тогда Р = 0,90; 2)

а = 0,05, тогда Р = 0,95; 3)

а = 0,01, тогда Р = 0,99.

Например, вероятность 0,01 означает, что в одном случае из 100 может быть отвергнута правильная гипотеза. В экономических исследованиях считается практически приемлемой вероятность ошибки 0,05, т.е. в 5 случаях из 100 может быть отвергнута правильная гипотеза.

Кроме того, %2-критерий, определяемый по таблице, зависит и от числа степеней свободы. Число степеней свободы V определяется как число групп в ряду распределения к минус число связей с V

Под числом связей понимается число показателей эмпирического ряда, использованных при исчислении теоретических частот, т.е. показателей, связывающих эмпирические и теоретичес- / л

кие частоты

Так, в случае выравнивания по кривой нормального распределения имеется три связи:

х ~ х" " СУ = а" * х Ш = У

ЭМП теор’ ЭМП ТеОр> ^ 1ЭМП ^ /теор*

Поэтому при выравнивании по кривой нормального распределения число степеней свободы определяется как V = к - 3, где к - число групп в ряду.

В случае выравнивания по кривой Пуассона V = к - 2, так как при построении частот используются две ограничивающие связи: х, 1тг /

Для оценки существенности расчетное значение %2расч сравнивается с табличным %2табл.

При полном совпадении теоретического и эмпирического распределений %2 = 0, в противном случае %2 > 0.

Если Храсч > Xтабл’ Т0 ПРИ заданном уровне значимости а и числе степеней свободы V гипотезу о несущественности (случайности) расхождений отклоняем.

В случае если %2асч ^ Х2табЛ’ заключаем, что эмпирический ряд хорошо согласуется с гипотезой о предполагаемом распределении и с вероятностью (1 - а) можно утверждать, что расхождение между теоретическими и эмпирическими частотами случайно.

Используя критерий согласия?2, необходимо соблюдать следующие условия: 1)

объем исследуемой совокупности должен быть достаточно большим (УУ> 50), при этом частота или численность каждой группы должна быть не менее 5.

Если это условие нарушается, необходимо предварительно объединить маленькие частоты; 2)

эмпирическое распределение должно состоять из данных, полученных в результате случайного отбора, т.е. они должны быть независимыми.

Если в эмпирическом ряду распределение задано частостями / \ т.

то у} следует исчислять по формуле

Критерий Романовского Кр основан на использовании критерия Пирсона %2, т.е. уже найденных значений %2, и числа степеней свободы v:

Он весьма удобен при отсутствии таблиц для %2.

Если Кр 3, то не случайны

и, соответственно, теоретическое распределение не может служить моделью для изучаемого эмпирического распределения.

Критерий Колмогорова X основан на определении максимального расхождения между накопленными частотами или частостями эмпирических и теоретических распределений:

X = -2= или X = , iN

где Dud- соответственно максимальная разность между накопленными частотами (F - F") и между накоплен-

ными частостями (р - р") эмпирического и теоретического рядов распределений;

N - число единиц в совокупности.

Рассчитав значение X, по таблице Р(к) (см. Приложение 6) определяют вероятность, с которой можно утверждать, что отклонения эмпирических частот от теоретических случайны. Вероятность Р(к) может изменяться от 0 до 1. При Р(к) = 1 происходит полное совпадение частот, при Р(к) = 0 - полное расхождение. Если А, принимает значения до 0,3, то Р(к) = 1.

Основное условие для использования критерия Колмогорова - достаточно большое число наблюдений.

Пример. Используя данные табл. 5.17, проверить правильность выдвинутой гипотезы о распределении призывников района по закону нормального распределения. Величины, необходимые для расчета критериев согласия, приведены в табл. 5.19.

Таблица 5.19

Расчет величин для определения критериев согласия Пирсона х2 и Колмогорова X Рост, см Частоты ряда распределения (/п - т")2 т" F F" к- р,\ т т" А 1 2 3 4 5 6 156-160 8 5 1,8 8 5 3 161-165 17 16 0,1 25 21 4 166-170 42 40 0,1 67 61 6 171-175 54 65 1,9 121 126 5 176-180 73 73 0 194 199 5 181-185 57 57 0 251 256 5 186-190 38 30 2,1 289 286 3 191-195 11 11 0 300 297 3 X 300 297 6,0 Сначала рассчитаем критерий Пирсона

Затем выберем уровень значимости а = 0,05 и определим число степеней свободы V. В данном распределении 8 групп и число связей (параметров) равно 3, следовательно, V = 8 - 3 = 5. По таблице Приложения 4 найдем при а = 0,05 и V = 5 критерий Пирсона %2 = 11,07.

Так как %2расч Проверим выдвинутую гипотезу, используя критерий Романовского:

I X2 - V I 16,0 - 5 I 1

кр = ] Г=^ = 1 = --г = 0,3.

Так как Кр Критерий Романовского также подтверждает, что расхождения между эмпирическими и теоретическими частотами несущественны.

Рассмотрим теперь применение критерия Колмогорова А,. Как видно из табл. 5.19, максимальная разность между кумулятивными частотами равна 6, т.е. Б = шах!/1- Р"\ = 6. Следовательно, критерий Колмогорова

X = -?= = = 0,35.

По таблице Приложения 6 находим значение вероятности при X = 0,35: Р(Х) = 0,9997. Это означает, что с вероятностью, близкой к единице, можно утверждать, что гипотеза о нормальном распределении не отвергается, а расхождения эмпирического и теоретического распределений носят случайный характер.

Теперь, подтвердив правильность выдвинутой гипотезы с помощью известных критериев согласия, можно использовать результаты распределения для практической деятельности.

Пример. Используя данные табл. 5.18, проверить гипотезу о подчинении распределения числа неисправностей в автомобилях закону Пуассона.

Исходные данные и расчет величин, необходимых для определения критериев согласия, приведены в табл. 5.20.

Подсчитаем величину %2: 2

Дфасч ^ / 9

(см. табл. 5.20). хХтабл = 9>49

(см. Приложение 4).

Поскольку %2расч Таким образом, выдвинутая гипотеза о распределении числа неисправностей в автомобилях по закону Пуассона не отвергается.