Строение и свойства цитоплазмы. Цитоплазма. Функции цитоплазмы. Строение цитоплазмы. Лимфоциты - важнейшие клетки иммунной системы

Известно, что большинство живых существ состоят из воды в свободном или связанном виде на 70 и более процентов. Откуда же ее берется столько, где она локализуется? Оказывается, каждая клетка в своем составе имеет до 80 % воды, и только остальное приходится на массу сухого вещества.

И главной "водной" структурой является как раз цитоплазма клетки. Это сложная, неоднородная, динамичная внутренняя среда, с особенностями строения и выполняемыми функциями которой мы и познакомимся далее.

Протопласт

Данным термином принято обозначать все внутреннее содержимое любой эукариотической мельчайшей структуры, отделенное плазматической мембраной от других ее "коллег". То есть сюда входит цитоплазма - внутренняя среда клетки, органоиды, в ней расположенные, ядро с ядрышками и генетическим материалом.

Какие органоиды располагаются внутри цитоплазмы? Это:

  • рибосомы;
  • митохондрии;
  • аппарат Гольджи;
  • лизосомы;
  • вакуоли (у растений и грибов);
  • клеточный центр;
  • пластиды (у растений);
  • реснички и жгутики;
  • микрофиламенты;
  • микротрубочки.

Ядро, отделенное кариолеммой, с ядрышками и также содержит цитоплазма клетки. В центре оно у животных, ближе к стенке - у растений.

Таким образом, особенности строения цитоплазмы будут во многом зависеть от типа клетки, от самого организма, его принадлежности к царству живых существ. В целом же она занимает все свободное пространство внутри и выполняет ряд важных функций.

Матрикс, или гиалоплазма

Строение цитоплазмы клетки складывается в первую очередь из ее деления на части:

  • гиалоплазма - постоянная жидкая часть;
  • органоиды;
  • включения - переменные структуры.

Матрикс, или гиалоплазма, - это главная внутренняя составляющая, которая может находиться в двух состояниях - золе и геле.

Цитозоль - такая цитоплазма клетки, которая обладает более жидким агрегатным характером. Цитогель - то же самое, но в более густом, богатом крупными молекулами органических веществ, состоянии. Общий химический состав и физические свойства гиалоплазмы выражаются так:

  • бесцветное, вязкое коллоидное вещество, достаточно густое и слизистое;
  • имеет четкую дифференциацию по структурной организации, однако вследствие подвижности легко может ее изменять;
  • изнутри представлена цитоскелетом или микротрабекулярной решеткой, которая образуется за счет белковых нитей (микротрубочек и микрофиламентов);
  • на частях данной решетки и располагаются все структурные части клетки в целом, а за счет микротрубочек, аппарата Гольджи и ЭПС между ними через гиалоплазму происходит сообщение.

Таким образом, гиалоплазма - важная часть, которая обеспечивает многие функции цитоплазмы в клетке.

Состав цитоплазмы

Если говорить о химической составе, то на долю воды в цитоплазме приходится около 70 %. Это усредненное значение, ведь у некоторых растений есть клетки, в которых до 90-95% воды. Сухое вещество представлено:


Общая химическая реакция среды - щелочная либо слабощелочная. Если рассмотреть, как располагается цитоплазма клетки, то следует отметить такую особенность. Часть собрана у края, в районе плазмалеммы, и называется эктоплазмой. Другая же часть ориентирована ближе к кариолемме, носит имя эндоплазмы.

Строение цитоплазмы клетки определяется специальными структурами - микротрубочками и микрофиламентами, поэтому их рассмотрим подробнее.

Микротрубочки

Полые небольшие удлиненные частички размером до нескольких микрометров. Диаметр - от 6 до 25 нм. Из-за слишком мизерных показателей полное и емкое изучение данных структур пока невозможно, однако предполагают, что стенки их состоят из белкового вещества тубулина. Это соединение имеет цепочечную спирально закрученную молекулу.

Некоторые функции цитоплазмы в клетке исполняются именно благодаря наличию микротрубочек. Так, например, они участвуют в выстраивании грибов и растений, некоторых бактерий. В клетках животных их намного меньше. Также именно эти структуры осуществляют движение органоидов в цитоплазме.

Сами по себе микротрубочки нестабильны, способны быстро распадаться и формироваться вновь, время от времени обновляясь.

Микрофиламенты

Достаточно важные элементы цитоплазмы. Представляют собой длинные нити из актина (глобулярный белок), которые, переплетаясь друг с другом, формируют общую сеть - цитоскелет. Другое название - микротрабекулярная решетка. Это своего рода особенности строения цитоплазмы. Ведь именно благодаря такому цитоскелету удерживаются вместе все органоиды, они могут смело сообщаться между собой, через них проходят вещества и молекулы, осуществляется метаболизм.

Однако известно, что цитоплазма - внутренняя среда клетки, которая часто способна менять свои физические данные: становиться более жидкой или вязкой, менять структуру (переход из золя в гель и обратно). В связи с этим микрофиламенты - динамичная, лабильная часть, способная быстро перестраиваться, видоизменяться, распадаться и формироваться вновь.

Плазматические мембраны

Важное значение для клетки имеет наличие хорошо развитых и нормально функционирующих многочисленных мембранных структур, что также составляет своего рода особенности строения цитоплазмы. Ведь именно через плазматические мембранные преграды происходит транспорт молекул, питательных веществ и продуктов метаболизма, газов для процессов дыхания и так далее. Именно поэтому большинство органоидов имеет эти структуры.

Они, подобно сети, располагаются в цитоплазме и отграничивают внутреннее содержимое своих хозяев друг от друга, от окружающей среды. Защищают и предохраняют от нежелательных веществ и бактерий, представляющих угрозу.

Строение большинства из них сходно - жидкостно-мозаичная модель, рассматривающая каждую плазмалемму как биослой из липидов, пронизанный разными белковыми молекулами.

Так как функции цитоплазмы в клетке - это в первую очередь транспортное сообщение между всеми ее частями, то наличие мембран у большинства органоидов является одной из структурных частей гиалоплазмы. Комплексно, все вместе, они выполняют общие задачи по обеспечению жизнедеятельности клетки.

Рибосомы

Небольшие (до 20 нм) округлые структуры, состоящие из двух половинок - субъединиц. Эти половинки могут существовать как вместе, так и разъединяться на какое-то время. Основа состава: и белок. Основные места локализации рибосом в клетке:


Функции данных структур заключаются в синтезе и сборке белковых макромолекул, которые расходуются на жизнедеятельность клетки.

и аппарат Гольджи

Многочисленная сеть канальцев, трубочек и пузырьков, образующая проводящую систему внутри клетки и расположенная по всему объему цитоплазмы, носит название эндоплазматической сети, или ретикулума. Ее функция соответствует строению - обеспечение взаимосвязи органоидов между собой и транспортировка питательных молекул к органеллам.

Комплекс Гольджи, или аппарат, выполняет функцию накопления необходимых веществ (углеводов, жиров, белков) в системе специальных полостей. Они ограничены от цитоплазмы мембранами. Также именно данный органоид является местом синтеза жиров и углеводов.

Пероксисомы и лизосомы

Лизосомы - небольшие округлые структуры, напоминающие пузырьки, заполненные жидкостью. Они весьма многочисленны и распределены в цитоплазме, где свободно перемещаются внутри клетки. Главная задача их - растворение чужеродных частиц, то есть устранение "врагов" в виде отмерших участков клеточных структур, бактерий и других молекул.

Жидкое содержимое насыщенно ферментами, поэтому лизосомы принимают участие в расщеплении макромолекул до их мономерных звеньев.

Пероксисомы - небольшие овальные или круглые органеллы, имеющие одинарную мембрану. Заполнены жидким содержимым, включающим большое количество различных ферментов. Являются одними из основных потребителей кислорода. Свои функции выполняют в зависимости от типа клетки, в которой находятся. Возможен синтез миелина для оболочки нервных волокон, а также могут осуществлять окисление и обезвреживание токсичных веществ и разных молекул.

Митохондрии

Данные структуры совершенно не зря называют силовыми (энергетическими) станциями клетки. Ведь именно в них происходит образование главных энергоносителей - молекул аденозинтрифосфорной кислоты, или АТФ. По внешнему виду напоминают фасолину. Мембрана, ограничивающая митохондрию от цитоплазмы, двойная. Внутренняя структура сильно складчатая для увеличения поверхности синтеза АТФ. Складки имеют название кристы, содержат большое количество разных ферментов для катализирования процессов синтеза.

Больше всего митохондрий имеют мышечные клетки в организмах животных и человека, так как именно они требуют повышенного содержания и расхода энергии.

Явление циклоза

Движение цитоплазмы в клетке имеет название циклоза. Оно складывается из нескольких типов:

  • колебательное;
  • ротационное, или круговое;
  • струйчатое.

Любое движение необходимо для обеспечения ряда важных функций цитоплазмы: полноценного перемещения органоидов внутри гиалоплазмы, равномерного обмена питательными веществами, газами, энергией, выведения метаболитов.

Циклоз происходит как в растительных, так и в животных клетках, без исключений. Если он прекращается, то организм погибает. Поэтому данный процесс - это еще и показатель жизнедеятельности существ.

Таким образом, можно сделать вывод о том, что цитоплазма животной любой эукариотической - очень динамичная, живая структура.

Отличие цитоплазмы животной и растительной клетки

На самом деле отличий немного. Общий план строения, выполняемые функции полностью схожи. Однако некоторые расхождения все же есть. Так, например:


В остальных отношениях обе структуры идентичны по составу и строению цитоплазмы. Может варьироваться количество тех или иных элементных звеньев, но наличие их обязательно. Поэтому значение цитоплазмы в клетке как растений, так и животных одинаково велико.

Роль цитоплазмы в клетке

Значение цитоплазмы в клетке велико, если не сказать, что оно определяющее. Ведь это основа, в которой располагаются все жизненно важные структуры, поэтому переоценить ее роль сложно. Можно сформулировать несколько основных пунктов, раскрывающих это значение.

  1. Именно она объединяет все составные части клетки в одну комплексную единую систему, осуществляющую процессы жизнедеятельности слаженно и совокупно.
  2. Благодаря входящей в состав воде, цитоплазма в клетке выполняет функции среды для многочисленных сложных биохимических взаимодействий и физиологических превращений веществ (гликолиз, питание, газообмен).
  3. Это основная "емкость" для существования всех органоидов клетки.
  4. За счет микрофиламентов и трубочек формирует цитоскелет, связывая органоиды и позволяя им передвигаться.
  5. Именно в цитоплазме сосредоточен ряд - ферментов, без которых не происходит ни одна биохимическая реакция.

Подводя итог, нужно сказать следующее. Роль цитоплазмы в клетке практически ключевая, так как она - основа всех процессов, среда жизни и субстрат для реакций.

Гелеобразное содержимое клетки, ограниченное мембраной называется цитоплазмой живой клетки. Понятие было введено в 1882 году немецким ботаником Эдуардом Страсбургером.

Строение

Цитоплазма является внутренней средой любой клетки и характерна для клеток бактерий, растений, грибов, животных.
Цитоплазма состоит из следующих компонентов:

  • гиалоплазмы (цитозоли) - жидкого вещества;
  • клеточных включений - необязательных компонентов клетки;
  • органоидов - постоянных компонентов клетки;
  • цитоскелета - клеточного каркаса.

Химический состав цитозоли включает следующие вещества:

  • воду - 85 %;
  • белки - 10 %
  • органические соединения - 5 %.

К органическим соединениям относятся:

  • минеральные соли;
  • углеводы;
  • липиды;
  • азотсодержащие соединения;
  • незначительное количество ДНК и РНК;
  • гликоген (характерен для животных клеток).

Рис. 1. Состав цитоплазмы.

Цитоплазма содержит запас питательных веществ (капли жира, зёрна полисахаридов), а также нерастворимые отходы жизнедеятельности клетки.

Цитоплазма бесцветна и постоянно движется, перетекает. Она содержит все органеллы клетки и осуществляет их взаимосвязь. При частичном удалении цитоплазма восстанавливается. При полном удалении цитоплазмы клетка погибает.

Строение цитоплазмы неоднородно. Условно выделяют два слоя цитоплазмы:

ТОП-4 статьи которые читают вместе с этой

  • эктоплазму (плазмагель) - наружный плотный слой, не содержащий органелл;
  • эндоплазму (плазмазоль) - внутренний более жидкий слой, содержащий органеллы.

Разделение на эктоплазму и эндоплазму ярко выражено у простейших. Эктоплазма помогает клетке передвигаться.

Снаружи цитоплазма окружена цитоплазматической мембраной или плазмалеммой. Она защищает клетку от повреждений, осуществляет выборочный транспорт веществ и обеспечивает раздражимость клетки. Мембрана состоит из липидов и белков.

Жизнедеятельность

Цитоплазма - жизненно важное вещество, участвующее в главных процессах клетки:

  • метаболизме;
  • росте;
  • делении.

Движение цитоплазмы называется циклозом или цитоплазматическим потоком. Он осуществляется в клетках эукариот, в том числе и человека. При циклозе цитоплазма доставляет вещества всем органеллам клетки, осуществляя клеточный метаболизм. Перемещается цитоплазма посредством цитоскелета с затратой АТФ.

При увеличении объёма цитоплазмы клетка растёт. Процесс деления тела эукариотической клетки после деления ядра (кариокинеза) называется цитокинезом. В результате деления тела цитоплазма вместе с органеллами распределяется между двумя дочерними клетками.

Рис. 2. Цитокинез.

Функции

Основные функции цитоплазмы в клетке описаны в таблице.

Отделение цитоплазмы от мембраны при осмосе воды, выходящей наружу, называется плазмолизом. Обратный процесс - деплазмолиз - происходит при поступлении в клетку достаточного количества воды. Процессы характерны для любых клеток, кроме животной.

Цитоплазма - это ограниченная клеточной мембраной внутренняя среда клетки кроме ядра и вакуоли. Ранее было сказано, что клетка состоит на 80% из воды. Особенностью строения цитоплазмы клетки является то, большая часть водной структуры клетки приходится на цитоплазму. К твёрдой части цитоплазмы можно отнести белки, углеводы, фосфолипиды, холестерин и другими азотсодержащие органические соединения, минеральные соли, включения в виде капелек гликогена (у животных клеток) и другие вещества. В цитоплазме протекают почти все процессы клеточного метаболизма. Также цитоплазма содержит запасные питательные вещества и нерастворимые отходы обменных процессов.

Функции цитоплазмы или роль цитоплазмы в клетке

Функции цитоплазмы или роль цитоплазмы :
1. Связывают все части клетки в единое целое;
2. В ней протекают химические процессы;
3. Осуществляет транспортировку веществ;
4. Выполняет опорную функцию.

 

К особенностям строения цитоплазмы можно отнести следующее:
1. Бесцветное вязкое вещество;
2. Находится в постоянном движении;
3. Содержит органойды (постоянные структурные компоненты и клеточные включения, и непостоянные структурные клетки);
4. Включения могут находиться в виде капель(жиры) и зёрен(белки и углеводы).

Посмотреть как выглядит цитоплазма можно на примере строения растительной клетки или животной клетки .

Движение цитоплазмы

Движение цитоплазмы в клетке осуществляется фактически непрерывно. Само движение цитоплазмы осуществляется за счёт цитоскелета , а точнее за счёт изменения формы цитоскелета.

Органойды цитоплазмы

К органойдам цитоплазмы клетки можно отнести все органойды находяциеся в клетке, так как все они расположены внутри цитоплазмы. Все органойды в цитоплазме находятся в подвижном состоянии и могут перемещаться за счёт цитоскелета.

Состав цитоплазмы

Состав цитоплазмы включает в себя:
1. Вода примерно 80%;
2. Белок около 10%;
3. Липиды около 2%;
4. Органические соли около 1%;
5. Неорганические соли 1%;
6. РНК примерно 0,7%;
7. ДНК примерно 0,4%.
Названный состав цитоплазмы справедлив для эукариотических клеток.

Цитоплазма - обязательная часть клетки, заключенная между плазматической мембраной и ядром и представляющая собой гиалоплазму - основное вещество цитоплазмы, органоиды - постоянные компоненты цитоплазмы и включения - временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60-90% всей массы цитоплазмы). Цитоплазма богата белками, в состав ее могут входить жиры и жироподобные вещества, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы - постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органелл клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Основное вещество цитоплазмы - гиалоплазма (цитозоль) - представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь - более жидкая гиалоплазма и гель - более густая гиалоплазма. Между ними возможны взаимопереходы: гель легко превращается в золь и наоборот.

Клеточные оболочки эукариотических организмов имеют различное строение, но всегда к цитоплазме прилегает плазматическая мембрана, на ее поверхности образуется наружный слой. У животных он называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), у растений - клеточной стенкой из мощного слоя волокон клетчатки.

Строение мембран . Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны (модель «сэндвича»). Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. В бислое хвосты молекул в мембране обращены друг.к другу, а полярные головки - наружу, к воде. Помимо липидов в состав мембраны входят белки (в среднем 60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя, различают периферические белки - белки, располагающиеся на наружной или внутренней поверхности липидного бислоя, полуинтегральные белки - белки, погруженные в липидный бислой на различную глубину, интегральные, или трансмембранные белки - белки, пронизывающие мембрану насквозь, контактируя при этом с наружной, и с внутренней средой клетки.



Мембранные белки могут выполнять различные функции: транспорт определенных молекул, катализ реакций, происходящих на мембранах, поддержание структуры мембран, получение и преобразование сигналов из окружающей среды.

В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс - гликокаликс, имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.

Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Толщина плазматической мембраны в среднем 7,5 нм.

Функции мембран .

1. Они отделяют клеточное содержимое от внешней среды.

2. Регулируют обмен веществ между клеткой и средой.

3. Делят клетки на компартаменты, предназначенные для протекания различных реакций.

4. Многие химические реакции протекают на ферментативных конвейерах, располагающихся на самих мембранах.

5. Обеспечивают связь между клетками в тканях многоклеточных организмов.

6. На мембранах располагаются рецепторные участки для распознавания внешних стимулов.

Одна из основных функций мембраны - транспортная, обеспечивающая обмен веществ между клеткой и внешней средой. Мембраны обладают свойством избирательной проницаемости , то есть хорошо проницаемы для одних вещества или молекул и плохо проницаемы (или совсем непроницаемы) для других. Существуют различные механизмы транспорта веществ через мембрану. В зависимости от необходимости использования энергии для осуществления транспорта веществ различают: пассивный транспорт - транспорт веществ, идущий без затрат энергии; активный транспорт - транспорт, идущий с затратами энергии.



В основе пассивного транспорта лежит разность концентраций и зарядов. При пассивном транспорте вещества всегда перемещаются из области с более высокой концентрацией в область с более низкой, то есть по градиенту концентрации.

Различают три основных механизма пассивного транспорта :простая диффузия - транспорт веществ непосредственно через липидный бислой. Через него легко проходят газы, неполярные или малые незаряженные полярные молекулы. Чем меньше молекула и чем более она жирорастворима, тем быстрее она проникает через мембрану. Интересно, что полярные молекулы воды очень быстро проникают через липидный бислой. Это объясняется тем, что ее молекулы малы и электрически нейтральны. Диффузию воды через мембраны называют осмосом.

Диффузия через мембранные каналы. Заряженные молекулы и ионы (Na + , К + , Са 2+ , С1~) не способны проходить через липидный бислой путем простой диффузии, тем не менее, они проникают через мембрану, благодаря наличию в ней особых каналообразующих белков, формирующих поры. Большая часть воды проходит мембрану через каналы, образованные белками-аквапоринами.

Облегченная диффузия - транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. Они взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Так в клетку транспортируются сахара, аминокислоты, нуклеотиды и многие другие полярные молекулы.

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. Одной из наиболее изученных систем активного транспорта является натрий-калиевый насос. Концентрация К + внутри клетки значительно выше, чем за ее пределами, a Na + - наоборот. Поэтому К + через водяные поры мембраны пассивно диффундирует из клетки, a Na + - в клетку. Вместе с тем для нормального функционирования клетке важно поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Это оказывается возможным потому, что мембрана, благодаря наличию натрий-калиевого насоса, активно перекачивает Na + из клетки, а К + в клетку. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3 иона Na + и закачивает 2 иона К + . К + быстрее пассивно диффундирует из клетки, чем Na + в клетку.

Клетка имеет механизмы, благодаря которым может осуществлять транспорт через мембрану крупных частиц и макромолекул. Процесс поглощения макромолекул клеткой называется эндоцитозом . При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной, являющейся частью наружной цитоплазматической мембраны. Различают два типа эндоцитоза: фагоцитоз - захват и поглощение крупных частиц (например, фагоцитоз лимфоцитов, простейших и др.) и пиноцитоз - процесс захвата и поглощения капелек жидкости с растворенными в ней веществами.

Экзоцитоз - процесс выведения различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны.

Органоиды клетки

Органоиды (органеллы) - постоянные клеточные структуры, обеспечивающие выполнение клеткой специфических функций. Каждый органоид имеет определенное строение и выполняет определенные функции.

Различают: мембранные органоиды - имеющие мембранное строение, причем они могут быть одномембранными (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток) и двумембранными (митохондрии, пластиды, ядро).

Кроме мембранных могут быть и немембранные органоиды - не имеющие мембранного строения (хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микротрубочки, микрофиламенты).

Одномембранные органоиды:

1. Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР. Мембраны с одной стороны связаны с наружной цитоплазматической мембраной, с другой - с наружной оболочкой ядерной мембраны. Различают два вида ЭПР: шероховатый (гранулярный), содержащий на своей поверхности рибосомы и представляющий собой совокупность уплощенных мешочков, и гладкий (агранулярный), мембраны которого рибосом не несут.

Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций, Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, с которой связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен.

Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из простых сахаров, созревание белков, образование лизосом.

3. Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диаметром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов, активных в слабокислой среде.

Образование лизосом происходит в аппарате Гольджи, куда из ЭПР поступают синтезированные в нем ферменты. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида.

Различают: первичные лизосомы - лизосомы, отшнуровавшиеся от аппарата Гольджи и содержащие ферменты в неактивной форме, и вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис, поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями).

Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани костной, исчезновение хвоста у головастика лягушек).

4. Реснички и жгутики. Образованы девятью сдвоенными микротрубочками, образующими стенку цилиндра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека.

Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет.

5. К одномембранным органоидам относятся также и вакуоли , окруженные мембраной - тонопластом. В растительных клетках могут занимают до 90% объема клетки и обеспечивают поступление воды в клетку за счет высокого осмотического потенциала и тургор (внутриклеточное давление). В животных клетках вакуоли небольшие, образуются за счет эндоцитоза (фагоцитозные и пиноцитозные), после слияния с первичными лизосомами называются пищеварительными вакуолями.

Двумембранные органоиды:

1. Митохондрии . Двумембранные органоиды эукариотической клетки, обеспечивающие организм энергией. Количество митохондрий в клетке колеблется в широких пределах, от 1 до 100 тыс., и зависит от ее метаболической активности. Число митохондрий может увеличиваться путем деления, так как эти органоиды имеют собственную ДНК.

Наружная мембрана митохондрий гладкая, внутренняя мембрана образует многочисленные впячивания или трубчатые выросты - кристы . Число крист может колебаться от нескольких десятков до нескольких сотен и даже тысяч, в зависимости от функций клетки. Они увеличивают поверхность внутренней мембраны, на которой размещаются ферментные системы, участвующие в синтез молекул АТФ.

Внутреннее пространство митохондрий заполнено матриксом . Вматриксе содержатся кольцевая молекула митохондриальной ДНК специфические иРНК, тРНК и рибосомы (прокариотического типа) осуществляющие автономный биосинтез части белков, входящих состав внутренней мембраны. Эти факты свидетельствуют в пользу происхождения митохондрий от бактерий-окислителей (согласно гипотезе симбиогенеза). Но большая часть генов митохондрии перешла в ядро, и синтез многих митохондриальных белков происходит в цитоплазме. Кроме того, содержатся ферменты, образующие молекулы АТФ. Митохондрии способны размножаться путем деления.

Функции митохондрий - кислородное расщепление углеводов аминокислот, глицерина и жирных кислот с образованием АТФ, синтез митохондриальных белков.

2. Пластиды . Различают три основных типа пластид: лейкопласты - бесцветные пластиды в клетках неокрашенных частей растений, хромопласты - окрашенные пластиды, обычно желтого, красного и оранжевого цвета, хлоропласты - зеленые пластиды. Пластиды образуются из пропластид - двумембранных пузырьков размером до 1 мкм.

Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Наиболее часто происходит пpeвращение лейкопластов в хлоропласты (позеленение клубней картофеля на свету), обратный процесс происходит в темноте. При пожелтении листьев и покраснении плодов хлоропласты превращаются в хромопласты. Считают невозможным только превращение хромопластов в лейкопласты или хлоропласты.

Хлоропласты. Основная функция - фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений по форме напоминают двояковыпуклую линзу. Наружная мембрана гладкая, а внутренняя имеет складчатую структуру. В результат образования выпячиваний внутренней мембраны возникает система ламелл и тилакоидов. Внутренняя среда хлоропластов - строма содержит кольцевую ДНК и рибосомы прокариотического типа. Пластиды способны к автономному делению, как и митохондрии. Факты, согласно гипотезе симбиогенеза, также свидетельствуют в пользу происхождения пластид от цианобактерий.


Рис. Современная (обобщённая) схема строения растительной клетки , составленная по данным электронно-микроскопического исследования разных растительных клеток: 1 - аппарат Гольджи; 2 - свободно расположенные рибосомы; 3 - хлоропласты; 4 - межклеточные пространства; 5 - полирибосомы (несколько связанных между собой рибосом); 6 - митохондрии; 7 - лизосомы; 8 - гранулированная эндоплазматическая сеть; 9 - гладкая эндоплазматическая сеть; 10 - микротрубочки; 11 - пластиды; 12 - плазмодесмы, проходящие сквозь оболочку; 13 - клеточная оболочка; 14 - ядрышко; 15, 18 - ядерная оболочка; 16 - поры в ядерной оболочке; 17 - плазмалемма; 19 - гиалоплазма; 20 - тонопласт; 21 - вакуоли; 22 - ядро.

Рис. Строение мембраны

Рис. Строение митохондрии . Вверху и в середине - вид продольного среза через митохондрию (вверху - митохондрия из эмбриональной клетки кончика корня; в середине - из клетки взрослого листа элодеи). Внизу - трехмерная схема, на которой часть митохондрии срезана, что позволяет видеть ее внутреннее строение. 1 - наружная мембрана; 2 - внутренняя мембрана; 3 - кристы; 4 - матрикс.



Рис. Строение хлоропласта . Слева - продольный разрез через хлоропласт: 1 - граны, образованные ламеллами, сложенными стопками; 2 - оболочка; 3 - строма (матрикс); 4 - ламеллы; 5 - капли жира, образовавшегося в хлоропласте. Справа - трехмерная схема расположения и взаимосвязи ламелл и гран внутри хлоропласта: 1 - граны; 2 - ламеллы.

Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы : рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы : митохондрии, пластиды, ядро.
  3. Одномембранные органеллы : аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.


Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь ) и вязком (гель ). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка . Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Сводная таблица строения и функций цитоплазмы

Структурные элементы Строение Функции
Эктоплазма Плотный слой цитоплазмы Обеспечивает связь с внешней средой
Эндоплазма Более жидкий слой цитоплазмы Место расположения органоидов клетки
Микротрубочки Построены из глобулярного белка - тубулина с диаметром 5нм, который способен полимеризироваться Отвечают за внутриклеточный транспорт
Микрофиламенты Состоят из актиновых и миозиновых волокон Образуют цитоскелет, поддерживают связь между всеми органеллами